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Abstract

A numerical method is developed for solving periodic, three-dimensional, vor-

tical flows around lifting airfoils in subsonic flow. The first-order method that is

presented fully accounts for the distortion effects of the nonuniform mean flow on

the convected upstream vortical disturbances. The unsteady velocity is split into a

vortical component which is a known function of the upstream flow conditions and

the Lagrangian coordinates of the mean flow, and ml irrotational field whose poten-

tial satisfies a nonconstant-coefficient, inhomogeneous, convective wave equation.

Using an elliptic coordinate transformation, the unsteady boundary value problem

is solved in the-frequency domain on grids which are determined as a function of

the Mach number and reduced frequency.

The numerical scheme is validated through extensive comparisons with known

solutions to unsteady vortical flow problems. In general, it is seen that the agree-

ment between the numerical and analytical results is very good for reduced frequen-

cies ranging from 0 to 4, and for Mach numbers ranging from .1 to .8.

Numerical results are also presented for a wide variety of flow configurations for

the purpose of determining the effects of airfoil thickness, angle of attack, camber,

and Mach number on the unsteady lift and moment of airfoils subjected to periodic



vortical gusts. It is seen that each of these parameters can have a significant effect

on the unsteady airfoil response to the incident disturbances, and that the effect de-

pends strongly upon the reduced frequency and the dimensionality of the gust. For a

one-dimensional (transverse) or two-dimensional (transverse and longitudinal) gust,

the results indicate that airfoil thickness increases the unsteady lift and moment at

the low reduced frequencies but decreases it at the high reduced frequencies. It is

seen that mean airfoil loading leads to a significant reduction in the unsteady lift

for the low reduced frequencies for both the 2-D and 3-D gust cases, but has little

effect for the 1-D case. Finally, the results show that an increase in airfoil Mach

number leads to a significant increase in the unsteady lift and moment for the low

reduced frequencies, but a significant decrease for the high reduced frequencies.
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CHAPTERI

INTRODUCTION

Most flows encountered in aerodynamics are high speed flows where the

Reynolds number is large and the effects of viscosity are confined to small regions

such as boundary layers and wakes. Because major portions of these flow fields are

essentially inviscid and irrotational, potential flow theory has been used extensively

by aerodynamicists in the analysis of flows about streamlined bodies. Today steady

potential flow solvers are widely used in the design of aircraft wings, turbomachinery

blades, and helicopter rotors.

In many real flow applications, however, the flow is not steady but unsteady.

Frequently the unsteadiness in the flow is due to the occurrence of upstream vortical

disturbances that are convected downstream and induce an unsteady flow field as

they interact with the body. For an aircraft wing, such upstream flow distortion can

be caused by atmospheric turbulence. For propeller and turbomachinery blades, the

vortical disturbances may be caused by the viscous wakes of an upstream rotor or

stator, installation effects, or upstream turbulence.

When viewed from the blade frame of reference, the upstream vortical distur-

bances will appear as propagating vorticity waves that are called gusts. There are

a number of undesirable effects that can be associated with such vortical gusts.

They will, for example, induce unsteady forces on the airfoil surface which can

cause forced vibrations and radiate noise into the far field. In some instances, the

impinging gusts may cause flow separation and loss of aerodynamic performance.

For rotating blades, the fundamental frequency of the upstream disturbances will

equal the blade passing frequency. If the frequency of the aerodynamic excitation

equals a natural frequency of the rotating blades mad the amplitude is sufficient,

then catastrophic structural failure may result.

Another possible source of unsteadiness in the flow is the unsteady motion of



the airfoils or blades themselves. Such unsteady structural motion can be caused by

structure-borne vibrations as well as the flow-induced oscillations described above.

There can also be unsteady interactions between the airfoil motion and the incident

disturbances which can dampen or increase the magnitude of the airfoil unsteady

motion.

Because of the undesirable effects associated with these unsteady flows, there is

considerable interest in controlling and understanding the aerodynamic excitations

which can cause such unsteady blade motion.

The earliest attempts to analyze these kinds of unsteady flow fields goes back

to the 1920's and 30's when aeronautical engineers sought to deal with vibration

problems that arose due to higher flight speeds. The early work dealt with flat

plate airfoils at zero mean incidence in incompressible flow. By considering small

disturbances to a uniform mean flow, it was possible to linearize about the mean

flow state and uncouple the unsteady part of the flow from the underlying steady

flow. The basic mathematical tools used by researchers at that time were primar-

ily conformal mapping techniques and the simple concepts of circulation theory.

Theodorsen 1 was the first to present a complete analysis for the problem of a flat

plate airfoil undergoing sinusoidal, oscillatory motion in an incompressible flow.

The analysis of vortical flows about thin airfoils in incompressible flow was

pursued along similar lines. The standard mathematical treatment consisted of de-

composing the unsteady velocity into solenoidal and irrotational components. By

splitting the unsteady velocity in this way, the mathematical formulation of the

gust response problem becomes similar to that of the oscillating airfoil problem.

The solenoidal part of the unsteady velocity represents a purely convected vorticity

wave whose mathematical expression is a known function of the upstream vortical

disturbances. There is no pressure associated with the vortical velocity. The irro-

rational component of the unsteady velocity is expressed as the gradient of a scalar

potential, and is coupled to the vortical component only through the airfoil bound-



ary condition. The pressure is determined entirely from the unsteady potential,

which for incompressible flows is governed by Laplace's equation. Sears 2 derived an

analytical solution for the unsteady lift on a rigid flat plate airfoil moving through

a sinusoidal vortical gust pattern in an incompressible flow.

When the mean flow is compressible, the unsteady potential satisfies a homo-

geneous, constant coefficient, convective wave equation. In this case the mathemat-

ical problem can be formulated in terms of an integral equation known as Possio's

equation. 3 Numerical results are usually obtained using collocation techniques. So-

lutions of periodic vortical flows around flat plate airfoils in compressible flow can

be found in the recent review paper of Atassi. 4

For flows around real airfoils with thickness, camber, or angle of attack, the

mean flow is no longer uniform. Later work in the analysis of unsteady, vortical

flows about airfoils dealt with the problem of mean flow nonuniformities and its

effect on the airfoil unsteady response. Horlock 5 used a heuristic approach to par-

tially account for the effects of airfoil incidence on the unsteady lift of airfoils in

incompressible flow. Naumann and Yeh 6 used a similar approach to account for the

effects of airfoil camber. However, both of these treatments neglected the coupling

between the unsteady velocity and the mean potential flow about the airfoil, and

only took into account the modified boundary condition at the airfoil surface.

Goldstein and Atassi r were the first to present a systematic theory that fully ac-

counts for the effects of the nonuniform mean flow on the airfoil unsteady response.

Their analysis of two-dimensional, periodic vortical flows around thin airfoils with

small camber and angle of attack showed that the vortical waves are nonlinearly

distorted as they are convected by the mean potential flow about the airfoil. Their

results showed that the mean flow distortion has a strong effect on the airfoil un-

steady response, and that the wave number in the normal direction has a significant

effect on the unsteady lift for these kinds of distorted flows.

In a subsequent paper s, Atassi showed that for thin airfoils in an incompress-



ible flow, it is possible to obtain the airfoil unsteady lift due to two-dimensionai,

periodic vortical gusts by linear superposition to the Sears lift of three independent

components accounting separately for the effects of airfoil thickness, camber, and

angle of attack. Explicit analytical formulas are presented in References 7 and 8

for the unsteady lift due to two-dimensional, sinusoidal, vortical gusts about thin

airfoils with small mean loading.

By fully accounting for the effects of the nonuniform mean flow, Goldstein and

Atassi 7 have introduced the concept of the "rapid distortion theory" of turbulence

in unsteady aerodynamics. The rapid distortion approximation was first used by

Prandtl 9, Taylor 1°, Ribner and Tucker 11 , and Batchelor and Proudman 12 to study

the change in turbulent structure in a contracting stream. It is based on the ap-

proximation that in high speed nonuniform flows, the distortion of large eddies is

mainly caused by mean flow variation. This leads to neglecting inter-eddy inter-

action and subsequently to the linearization of the unsteady governing equations

about the nonuniform mean flow.

While the theoretical treatments described above have afforded significant in-

sight in unsteady aerodynamics, they are limited to incompressible flows about

airfoils with small mean loading and thickness, or to compressible flows around un-

loadcd, flat plate airfoils with zero thickness. In addition, the vortical disturbances

are in general limited to the two-dimensional case, so that spanwise variation of

the unsteady flow is not included, except for flat plate results such as are found in

Atassi 4 and in Graham. 13

For most flows encountered in applications, however, one deals with heavily

loaded airfoils at high Mach number and with three-dimensional upstream gusts.

This is particularly true for turbomachinery and propeller blades, where recent

technological trends have led to the development of highly swept, heavily loaded

blades that operate in the transonic flow regime. Because of the high sweep, three-

dimensional effects are important. In addition, compressibility effects are significant



due to the high relative Mach numbers of the rotating blades. Due to the complica-

tions of compressibility, heavy loading, and three-dimensional effects, the analysis

of these kinds of unsteady flows is clearly beyond the realm of analytical mathe-

matical treatments. The study of such complex flow fields requires the development

of computational schemes which can obtain approximate numerical solutions to the

unsteady equations governing the flow.

Up until recently, most numerical efforts to solve these kinds of unsteady flows

concentrated on potential methods. The early work dealt with solving the unsteady

small disturbance potential equation as a way of obtaining the unsteady flow around

oscillating airfoils or cascades. Later work was directed toward solving the linearized

unsteady potential equation and the unsteady full potential equation. References

14 through 18 represent some of the numerical work that has been done using an

unsteady potential formulation.

Potential methods have proven to work well for oscillating airfoil problems,

but unfortunately they cannot adequately account for the vortical part of the flow.

Previous potential formulations which have included the effects of the upstream

vorticity have invoked the linear thin airfoil approximation and assumed that the

imposed vortical gust is convected without distortion by the nonuniform mean flow.

This was the approach used by McCroskey and Goorjian 19 and McCroskey 2°. How-

ever, as shown by Goldstein and Atassi 7 and Atassi s, the assumption that the gust f

is convected without distortion is not justified and is a poor approximation for flows

with a spatially varying mean flow. This is especially true for turbomachinery and

propeller flow fields where the blades are heavily loaded and there are strong mean

flow gradients.

In the past few years, computational efforts in unsteady aerodynamics have

concentrated on the so-called primitive variable methods, wherein a system of non-

linear equations such as the unsteady Euler or Navier-Stokes equations are solved

in time along with certain specified boundary conditions. References 21 through



25 representsomeof the recent work in this area. Unlike the potential methods,

the primitive variable methods are equally well-suited to both oscillating airfoil

problems and flows with convected upstream vorticity.

The major disadvantage of the primitive variable approach is that it requires

solving a system of unsteady, nonlinear, partial differential equations. While much

progress has been made in this area, there are still a number of difficulties associated

with this approach. Among the difficulties are the need for large computer mem-

ory and lengthy solution times. Sophisticated algorithms are required to solve the

equations, and special grid generation capabilities may also be needed. In addition,

uncertainties about far field boundary conditions for time dependent calculations

governed by nonlinear equations leaves some question about the accuracy of the

solutions. More progress is needed in the development of efficient, accurate algo-

rithms and accurate far field boundary conditions for unsteady, nonlinear problems

to make the primitive variable approach more generally useful.

In many unsteady flows, and in particular many turbomachinery flows, the

upstream disturbances are small compared to the mean flow, and it is possible to

use the linearized approach of the rapid distortion theory to study these "weakly

rotational" flows. 4 Goldstein 26 recently proposed a general theory for this approach

which leads to a formulation which is valid for compressible, three-dimensional

vortical flows around arbitrary bodies. Considering the problem of periodic vortical

and entropic disturbances imposed upstream on a mean potential flow field, he

showed that the unsteady velocity due to the imposed upstream disturbances can

be decomposed into the sum of a known vortical component, a known entropic

component, and an unknown irrotational (potential) component. The expressions of

the vortical and entropic components are known functions of the upstream unsteady

disturbances and the mean flow Lagrangian coordinates. The unsteady potential

satisfies a nonconstant-coefficient, inhomogeneous, convective wave equation.

Goldstein's decomposition of the unsteady velocity greatly simplifies the math-
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ematical treatments of potential mean flows with imposed upstream vortical and

entropic disturbances. Whereas a previous formulation by Hunt 27 led to a sys-

tem of three Poisson equations for the vortical velocity and a Laplace equation for

the potential part of the unsteady velocity, Goldstein's formulation leads to a sin-

gle convective wave equation for the potential part of the unsteady velocity, and

the vortical part is obtained from its known functional expression of the upstream

disturbances and mean flow quantities.

For most aerodynamic flows of practical interest, there will be a stagnation

point near the airfoil leading edge, and at this point the mean flow Lagrangian

coordinates will become singular and will remain so along the airfoil surface and

its wake. Since Goldstein's vortical velocity is proportional to the gradients of

the Lagrangian coordinates, it will also be singular along these surfaces. In order

to ensure that the normal velocity vanishes at the airfoil surface, it will then be

necessary for the potential part of the unsteady velocity to cancel the singular

behavior of the vortical velocity, and therefore the potential must satisfy a singular

airfoil boundary condition. Because of these features, it is not possible to use

Goldstein's formulation directly for numerical computations for aerodynamic flows

with a stagnation point.

Atassi and Grzedzinski 2s have shown that it is possible to modify Goldstein's

splitting of the unsteady velocity in such a way as to remove the singular and

indeterminate character of the resulting airfoil and wake boundary condition for the

unsteady potential. In their decomposition of the unsteady velocity, the vortical

component is a known function of the upstream disturbance conditions and the

Lagrangian coordinates of the mean potential flow, and has the remarkable property

that its normal and streamwise velocity components vanish at the surface of the

airfoil and in its wake. The unsteady potential satisfies Goldstein's convective wave

equation with a modified source term.

For incompressible flows the governing convective wave equation reduces to a



Poisson equation. Atassi and Grzedzinski 29 used a Green's function formulation to

study incompressible, vortical flows about isolated airfoils with arbitrary thickness,

camber, and angle of attack. Their analysis assumed three-dimensional, periodic

vortical disturbances imposed upstream of a two-dimensional airfoil of infinite span.

Their results showed that the airfoil geometry and the upstream three-dimensional

conditions of the vortical disturbances has a strong influence on the alrfoil unsteady

response.

For compressible flows, the governing convective wave equation of Goldstein as

modified by Atassi and Grzedzinski has variable coefficients which are functions of

the mean flow quantities. In this case it is not possible to formulate the problem

in terms of an integral equation or to derive an analytical solution. Due to the

effects of compressiblity, therefore, it is necessary to use a full numerical approach

to obtain approximate solutions to the resulting boundary value problem.

The major purpose of the present work is to present a frequency domain nu-

merical scheme which has been developed to implement this linearized approach in

order to obtain solutions to periodic vortical flows around lifting airfoils of arbitrary

thickness, camber, and angle of attack in compressible, subsonic flow. Previous

papers 3°'31 have presented details of the present approach for the special case of

nonlifting airfoils.

The linearized unsteady aerodynamic analysis and solution method that axe

presented represent an alternative to the potential and primitive variable methods

for the solution of unsteady aerodynamic flow problems. The present method offers

the computational efficiency of potential methods, but at the same time accounts

for the convection and distortion of the upstream vorticity by the nonuniform mean

flow. Our approach is therefore equally well-suited to vortical flow problems as

well as oscillating airfoil problems. In addition, since our linearization is about the

nonuniform mean flow, the full nonlinear effects of the mean flow are accounted for.

Only the unsteady part of the flow is linearized. These features, coupled with the

8



inherent efficiency of the linearized approach, make the present approach an ideal

solution method for unsteady aerodynamic flow fields.

In addition to presenting the extension of our numerical scheme to lifting air-

foils, another purpose of the present dissertation is to present numerical solutions

for a wide range of flow conditions and airfoil geometries in order to assess the

relative effects of Mach number, airfoil thickness, camber and angle of attack, and

upstream disturbance conditions on the airfoil unsteady response (unsteady lift and

moment). Our analysis will consider imposed upstream three-dimensional, vortical

disturbances around two-dimensional airfoils of infinite span. We will assume that

there are no incident acoustic waves or upstream entropy disturbances.

Although we will not directly concern ourselves with the acoustic radiation

in the present dissertation, the method that we present can also give the far field

unsteady pressure from which the acoustic radiation can be calculated. This avoids

the use of Lighthill's analogy and the tedious calculation which may result from

the refraction and scattering of the radiated acoustic waves by the spatially varying

flow field. In a future paper, the present approach will be used to calculate the far

field acoustic radiation for arbitrary lifting airfoils in subsonic flows. Dusey 32, and

Atassi and Dusey 33, have carried out a similar calculation for flat plate airfoils.

In Chapter II we present the general aerodynamic theory and formulate the

boundary value problem for the linearized treatment of potential mean flows with

imposed upstream, periodic vortical disturbances. In Chapter III we provide the

details of the general frequency domain numerical scheme which has been developed

for lifting airfoils in subsonic flow. Finally, we present and discuss numerical results

for a wide variety of flow conditions in Chapter IV.

9



CHAPTER II

AERODYNAMIC THEORY

2.1 Linearized Euler Equation-,

Consider an inviscid,compressible flow past an airfoilplaced at nonzero in-

cidence to a stream with uniform upstream velocity Uoo in the Xl direction. We

shall assume in the present discussion that there are no shocks in the flow. Now

ifwe also assume the fluid to be an ideal,non-heat conducting gas with constant

specificheats, then the governing continuity,momentum, and entropy conservation

equations can be written

Dp

(2.1)

D0
P Dt - (2.2)

D8

-0 (2.3)Dt

where _, is the material derivative, t denotes time, and p, U, p and s denote the

fluid density, velocity, pressure, and entropy, respectively. In addition, by ideal gas,

we mean that the pressure p, density p, and temperature T are related through a

gas constant R by the relation p - pRT.

In the absence of upstream flow disturbances, and assuming the airfoil to be

rigid, there will be a steady flow U0(x) about the airfoil such that LT0(_) _ Uco_"

as xl _ -or, where _'is a unit vector in the zl direction. Let us suppose that far

upstream a small amplitude, unsteady velocity disturbance, which we will denote by

zToo, is imposed on the flow. Then since IzT=[ is small compared to Uoo, we assume

that there will be small, unsteady perturbations in the physical properties of the

otherwise steady flow. It is therefore reasonable to linearize the governing equations

(2.1) - (2.3) about the mean flow state and to introduce perturbation quantities as

follows:

10



d(_.,t) = do(e) + ff(r,,t) (2.4)

p(_.,t) = po(r.)+ p'(_.,t) (2.5)

p(e,t) = po(e)+ p'(e,t) (2.6)

s(e,t) = so+ s'(e,t) (2.7)

where 0 subscripts denote the steady mean flow quantities, the entropy so is con-

stant, and if, p', p', and s t axe the unsteady perturbation velocity, pressure, density

and entropy, respectively.

Substituting relations (2.4) - (2.7) into equations (2.1) - (2.3) and neglecting

products of small quantities, one obtains the lineaxized continuity, momentum, and

entropy conservation equations

Dop_.____'+ p,_ . Uo + V" (P0ff)= 0 (2.8)
Dt

,Doff (2.9)
pot--D-?+ ff"_d0) + p'd0. Ct:0 = -_p'

Dos' -0, (2.10)
Dt

where -_t -- __00t+ Uo • V is the material derivative associated with the mean flow.

Equations (2.8) - (2.10) axe the governing partial differential equations for the

unknown perturbation quantities ff, p_, pt, and s t for the problem of small, unsteady

disturbances to an otherwise steady flow. The upstream disturbance ffoo is essen-

tially a boundary condition which is imposed on the unsteady velocity ff. That is,

we must have ff --4 ffoo as xl _ -co. We shall assume in the present paper that

ffoo is the only upstream disturbance imposed on the mean flow, i.e., there are no

imposed entropy disturbances or incident acoustic waves.

Now from previous work concerning small amplitude velocity disturbances im-

posed on a uniform flow, it is known that the unsteady velocity can be decomposed

into the sum of a vortical component which has zero divergence, is purely convected,

11



and is decoupled from the pressure and any thermodynamic property, and an irrota-

tional component which is directly related to the pressure but produces no entropy

fluctuations, s4,2e Then far upstream the total velocity U must be of the form

0 = (2.11)

where

V'ffoo =0. (2.12)

To first order, there is no pressure associated with the velocity field ffoo. The

unsteady velocity ff must satisfy

ff(_,t)--* ffoo(_-_Uoot) as x,--*-oo, (2.13)

and the pressure p' obeys

p'(_,t)---*O as xl--*-oo. (2.14)

2.2 Goldstein's Approach

Goldstein 26 proposed a general approach for the analysis of potential mean

flows with imposed upstream vortical and entropic disturbances which greatly sim-

plifies the mathematical treatments of such flows. Under the conditions assumed

on the flow in previous section, the mean flow can be expressed as the gradient of

a potential,

Uo(_) = ¢_0. (2.15)

In the present work we consider two-dimensional mean flow, so that /-_0(_) =

( 04_ O@

The simplest case of potential mean flow with imposed upstream disturbances

is the thin airfoil problem where the potential flow is simply a uniform parallel

flow. In this case it is advantageous to split the unsteady velocity into a vortical

12



componentwhich is solenoidal, and an irrotational component which is expressed

as the gradient of an unsteady potential. For the general problem of nonuniform

flows around real airfoils, however, the splitting into solenoidal and irrotational

components does not lead to any simplification of the mathematical formulation.

Goldstein proposed a new approach wherein the unsteady velocity is decom-

posed into the sum of a known vortical component u-<I) and an unknown potential

component V$ so that

_(£, t) = u-'(I) + V¢. (2.16)

The vortical component u-<I) is essentially a function of the upstream disturbance

ffoo and the mean flow Lagrangian coordinates and their spatial gradients. The

unsteady potential satisfies a nonconstant-coefllcient, inhomogeneous, convective

wave equation

Do 1 D0¢)_ l_.(p0_¢)= l_.(p0u-<1)), (2.17)
-_( co 2 Dt po po

where Do is the convective derivative associated with the mean flow, and co and
Dt

P0 are, respectively, the mean flow speed of sound and density. ¢ is related to the

pressure by

D0¢ (2.18)v' =

The vortical component u-'(I) is in general not solenoidal, but it does become

solenoidal far upstream where the mean flow is uniform. For flows with no upstream

entropy disturbances, _r) is given by

0X
ui (I) = ffoo()_ - _Uoot)" -_x_" (2.19)

The components of ()_ - "_Uoot), where )_ = (Xl,X2,X3), are essentially La-

grangian coordinates of the mean flow fluid particles. X2 = X2(Xl,X2,X3) and

X3 = Xs(xl, x2, xa) are functionally independent integrals of the equations

dx___L1- dx2 _ dx____3 (2.20a)
U1 U2 U3

13



such that

X2---_z2 and X3--*x3 as xl---_-oo. (2.20b)

For two-dimensional mean flow, we may take

xI/0
x2 = (2.21)

pooUoo

and

X3-x3, (2.22)

where _o is the stream function of the mean flow and z3 is the spatial coordinate

in the spanwise direction. The component X1 is defined by

X, = UooA, (2.23)

where A is the Lighthill "drift" function 35, which can be expressed in terms of 00

and _o as

A_ ¢0 j¢'/_°( 1 1 )dO0, (2.24)Uoo 2 + oo U02 U,_, 2

where the integration is carried out on _0 = constant. The difference in A between

two points on a streamline is the time it takes a mean flow fluid particle to traverse

the distance between those two points.

To complete the formulation of the problem, it is necessary to specify boundary

conditions for the unsteady potential $. At the surface of the airfoil, the normal

velocity component must vanish, so that $ must satisfy

(_x) + x_). ,_= o (2.25)

or

0, _ __)
0-_- "'_' (2.26)

14



where_ is the unit normal at the surface of the airfoil. In the wake, the pressure is

continuous so that _ must obey

-_(A@) = O, (2.27)

where A@ is the jump in @ across the vortex sheet behind the airfoil. Far upstream,

@ must satisfy

@ --} 0 as xl _ -c¢. (2.28)

2.3 Atassi and Grzedzinski's Decomposition

of the Unsteady Velocity

For most flows of practical aerodynamic interest, there will be a stagnation

point near the leading edge of the airfoil where the mean velocity U0 vanishes. At

this point the drift function A has a logarithmic singularity, and the right hand

side of (2.19) then has a nonintegrable reciprocal singularity. Since A is additive,

the right hand side of (2.19) will remain undefined along the surface of the airfoil

and in its wake. Equation (2.26) then shows that the boundary condition for _ is

singular along the airfoil surface. Because of these difficulties we conclude that it

is not possible to use Goldstein's approach directly for numerical computations of

unsteady vortical flows around aerodynamic bodies with a stagnation point.

Atassi and Grzedzinski 2s have shown that it is possible to modify Goldstein's

splitting of the unsteady velocity field in such a way as to remove the singular

and indeterminate character of the resulting boundary condition for the unsteady

potential at the airfoil surface. In their decomposition of the unsteady velocity, ff

is split into the sum of a known vortical component _R), which has zero normal

and streamwise velocity components on the airfoil and in the wake, and an unkown

potential component @* that satisfies equation (2.17) with a modified source term,

so that

iT(a?, t)= _n) + _@, (2.29)
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where ¢* satisfies

Do( 1 D0¢*__ _0_.(p0_¢,)= !_.(p0_R))-_ Co-2 Dt " Po

The vortical component _R) is given by

_R) = _,,) + _,

where ¢ is a function that satisfies

(2.30)

(2.31)

-0. (2.32)
Dt

As shown in Reference 28, there is no pressure associated with the velocity V¢, so

that the vortical velocity _R) produces no pressure fluctuations. The pressure is

determined entirely by ¢* and is given by

D0¢*
p'=-p0(_) (2.33)

In order to choose a particular function ¢ that cancels the singular behavior of

u-'(I) along the surface of the airfoil and in its wake, the boundary condition

(_D + _). ff = 0 (2.34)

is imposed at the airfoil surface and in the wake. Condition (2.34) should be under-

stood as the limit as we move close to the airfoil and the wake. Details concerning

the construction of the function ¢ can be found in Reference 28. For the important

special case of incident harmonic velocity disturbances, specific formulas for ¢ are

presented in Reference 28, and will be discussed later in the present dissertation.

The function if(R) has zero normal and streamwise velocity components at the

airfoil surface and in the wake, so that _R) satisfies

if(a), ff = 0, (2.35)

and

u-"(R) ' _*----O, (2.36)
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where _ and "7 are the unit normal and tangent vectors.

condition for ¢* is then

+ = 0

The airfoil boundary

(2.37)

which reduces to simply

_d*.ff=O. (2.38)

In addition to satisfying the governing equation (2.30) and the airfoil boundary

condition (2.38), the unsteady potential d* must also satisfy appropriate boundary

conditions in the far field, in the wake, and at the airfoil trailing edge.

In the far field, equations (2.29) and (2.31) together with condition (2.13) imply

that ¢* must satisfy

_¢* _-V¢ as zl--,-c¢. (2.39)

In the wake of the airfoil, ¢* is not continuous but must satisfy a jump condition

determined by the continuity of the unsteady pressure. Applying (2.33) on each side

of the vortex sheet behind the airfoil leads to the condition

-_(ZX¢*) 0 wake (2.40)

Finally, at the trailing edge point ¢* must be continuous in the streamwise

direction to ensure satisfaction of the Kutta condition.

2.4 Upstream Disturbances

In a previous paper 3°, it has been shown that the most general upstream vorti-

cal disturbances can be represented as the sum of three-dimensional, harmonic vor-

ticity waves in the blade frame of reference. Because the governing equation (2.30)

is linear, we can without loss of generality consider a single Fourier component of

the incident disturbance, and obtain the solution to more general disturbances by

superposition. We therefore consider incident velocity disturbances of the form

ffo_ = fie if''(r-Tu_t) (2.41)
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where [_[ _ Uoo, k is the wave number vector which specifies the direction of

propagation of the gust, and h" and k' must satisfy

(2.42)

in order to ensure that ffoo is solenoidal (satisfies the continuity equation).

Now condition (2.13) shows that the unsteady velocity ff(_, t) must satisfy

g(_,t) --, _'e'*'(_-'U_O as zl _ -co. (2.43)

Since X2 - _,0 and _0 is the stream function of a two-dimensional mean flow,-- poo Uoo

r

X2 _ z2 + oo27rU-ln(x12 + z22) + constant as x] _-oo, (2.44)

so that we do not have X2 _ x2 at upstream infinity, as required by condition

(2.20b). Equations (2.29), (2.31), and (2.39) together with (2.19) then show that

U(X,t) _ ae i_'(x'-U°°t'x2"i'_r'_ln(zt_+xaa)'4"c°nst&nt'xa) as X1 _ -oo, (2.45)

so that (2.43) is not satisfied.

However, as discussed by Atassi s, for a real airfoil of finite span, X2 ---, x2 +

constant. The two-dimensional approximation is only valid then for distances that

are small compared to the airfoil span, but large compared to the chord. Thus,

(2.44) should be considered in this limit.

In order to avoid difficulties with upstream conditions, the imposed upstream

disturbances should then take the general form

ffc¢ = _e ig'()_-''u_ t) (2.46)

where ,_ is defined by (2.21) - (2.23). Then with this definition of tT_, equations

(2.19) and (2.45) show that condition (2.13) will be satisfied.
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2.5 The Boundary Value Problem

For convenience we now summarize the boundary value problem that has been

developed in the first four sections of the present chapter. From this point on we

drop the "*" notation which was used to distinguish between the formulation of

Atassi and Grzedzinski in Section 2.3 and the formulation of Goldstein in Section

2.2.

We consider a potential mean flow about a two-dimensional airfoil of infinite

span with three-dimensional, rotational velocity disturbances of the form

ffoo = _eif"("_-_u_t)

imposed upstream. The amplitude _ satisfies ]_[

equations (2.21) through (2.23).

The unsteady potential obeys the convective wave equation

(2.47)

<< U_, and )( is defined by

Do 1 D0¢) 19.(p0_¢) = 19.(po_n)),
Dt (co 2 Di " Po Po

where the unsteady velocity is given by

and the unsteady pressure is determined from

p' = ¢.

In addition, ¢ must satisfy the boundary conditions

(2.48)

(2.49)

/x[9¢. =0

(2.50)

airfoil surface (2.51)

wake (2.52a)

wake (2.52b)
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and be continuous in the streamwise direction at the airfoil trailing edge. Note

that for completeness we have also included boundary condition (2.52b), which

imposes continuity of the normal velocity across the wake. For nonlifting airfoils

this condition is automatically satisfied, since in that case d is an odd function with

respect to X2. For lifting airfoils, however, ¢ is no longer an odd function and

condition (2.52b) must be imposed.

To complete the mathematical formulation of the boundary value problem, the

explicit expression of the function ¢ must be given. For a complete discussion of

the derivation of ¢ for the general problem of arbitrary upstream disturbances, the

reader should consult Reference 28. For the problem of periodic disturbances of the

form (2.47) imposed upstream of a single obstacle which is two-dimensional (such

as an isolated airfoil), it is shown in Reference 28 that q_ is given by

i a2kl - alk2 1 - e -ik2x_

__r__l_a1 + 1 + iaoUookl k2

where

)eig'(2-_u= '), (2.54)

( OUo ,-'
ff=(al,a2,a3) and a0 =- -_-_-n) s . (2.55)

Here n denotes the direction of the outward unit normal, S denotes the stagnation

point near the airfoil leading edge, and U0 = Ib_] is the magnitude of the mean

velocity.

With this definition of ¢, and with the upstream velocity disturbances given

by (2.47), the vortical velocity may then be written

= + (2.56)

This completes the linearized mathematical formulation for the general bound-

ary value problem of unsteady vortical flow past a lifting airfoil.
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CHAPTER III

NUMERICAL SCHEME

3.1 Reformulation and Nondimensionalization

of the Boundary Value Problem

For numerical purposes it is necessary to reformulate the boundary value prob-

lem presented in the previous section into a form more suitable for numerical com-

putations. Of particular concern is condition (2.53). In order to facilitate the

implementation of the far field boundary condition, it is convenient to replace d by

a function whose gradient vanishes as r --* c¢, where r is the distance from the

airfoil center.

To this end, we introduce the potential functions ¢1 and ¢2, where

¢ = ¢, _ ¢_ (3.1)

and ¢2 is a known function which is constructed such that

1¢2 - ¢1--* 0 as r --* (x_. (3.2)

Equation (3.1) together with conditions (2.53) and (3.2) then show that the new

potential function ¢1 will satisfy

¢¢1 --*¢¢_-¢$--*0 as r-_oo. (3.3)

The problem may then be reformulated in terms of the unknown potential ¢1.

To satisfy condition (3.2), the function ¢2 must take the form

i a2kl - alk2 1 - e -ik2x2 )ei£.(:_,-_Uoot)
¢2 = _'1 (al + 1 + iaoUookl k2

where the vector .Xe satisfies

(3.4)

I£, - £1 ---'0 as ,- ---,oo. (3.5)
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To satisfy this condition for the general problem of vortical flows around lifting

airfoils, we define ,I_ as follows:

(3.6)

x,,, = x2 (3.7)

x,,3 = x3. (3.s)

The expression for Xe, 1 is obtained by making a far field expansion of Lighthill's

drift function A in terms of q'0 and _0. Note that the first term in the expansion is

just _ and that the second term arises due to the circulation around the airfoil.
Uoo '

Since the second term vanishes for airfoils with zero circulation, it is clear that the

formulation of the source term for nonlifting airfoils is much simpler than for lifting

airfoils.

We also point out that the first factor in brackets on the right hand side of

equation (3.6) is discontinuous and undefined at the points on the airfoil where

q'0 = 0, _0 = 0 + and q_0 = 0, _I'0 = 0-. The second factor in brackets is not part of

the expansion itself, but is included to remove the discontinuity which would occur

due to the first factor. By including the second factor in brackets and defining

Xe,1 = 0 at 'I'0 = 0, _I'0 = 0, we obtain an expression for X,,1 which is everywhere

continuous. It is important that Xe,l be continuous along the airfoil surface, for if

it were not, the potential function 4_1 would have to satisfy a discontinuous airfoil

boundary condition. (See condition (3.10) below.) By defining X,,1 as in (3.6), we

obtain an expression for )_, which is everywhere continuous and also ensures that

conditions (3.5) and (3.2) will be satisfied for both lifting and nonlifting airfoils.

Finally, c is the airfoil chord length, and the parameter floo, which is equal to

V/1 - Moo 2, where Moo is the free stream Mach number, arises due to a Gothert's

rule correction on the mean velocity so that the expression for X,,1 is valid for both

compressible and incompressible flows.
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Before presenting the reformulated boundary value problem in terms of the

potential ¢1, we present the nondimensionalization of the problem. We normalize

as follows:

C

xl , x2, xs, X1, X2, X3, Xe,1 by

_o, F by _Uoo

_o by _pooUoo

Uo, co by Uoo

Po by Poo

p, by pooUool_l

t, A by e__z_2Uo,,

w by
C

kl, k2, k3 by

¢,¢,¢x,¢2 by

by la'l

The normalized wave number kl = w....._cwhere w and U_ are the dimen-
2U¢¢ '

sional angular frequency and free stream velocity, respectively, is called the reduced

frequency.

We will assume throughout the remainder of the present chapter, unless stated

otherwise, that all quantities are nondimensional.

The governing equation for ¢1 is then

D0 1 D0¢,) l_.(p0_¢,)= l_.(p0u-4R) )
Dt ( c02 Dt Po Po

D0( 1 Do ¢2 (3.9)+ _ _2 Dt )- lV'(p°V¢2)po

and the boundary conditions are

_¢1 " _ _- _(_2" _ airfoil surface (3.10)
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D_[A(¢I - ¢2)] = 0 wake (3.11a)

/k[_(¢1 - ¢2)" _ = 0 wake (3.11b)

_¢1 "+ 0 as Xl --+-oo. (3.12)

For completeness we also present the nondimensional expressions for the poten-

tial functions _ and ¢2, for the unsteady velocity and pressure, and for the upstream

velocity disturbances.

= -_,(ali + a2kll+ -iaoklalk2 1 - e -ik2x2k2 )eig':_-ik't (3.13)

.:_(i + a2kl - alk 2 1 - e -ik2X2 )eig.X._iklt '¢2 (3.14)
kl "al 1 + iaokl k2

where

X1 =A, X2=X,,2=_0, Xs=Xt,3=xs (3.15)

xe.1 ¢0 rsgn(_0)[ 2 +sgn(_0)tan-'
q'0

= - r (_---_--_-o,,L_]rl- e-('t'g+_'o_)] (3.16)

,z(e,t) = #R) + _(¢, _ ¢_)

where

(3.17)

u-'(R)= [¢(,_.._)]e'__-'''' + W_. (3.18)

p, = _p0(_) D0(¢1 - ¢,)Dt (3.19)

Uoo = aei'k')_-iktt (3.20)
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3.2 Determination of Mean Potential Flow

In order to obtain numerical solutions to equation (3.9) and its associated

boundary conditions, one must first obtain the steady potential flow about the

airfoil for the given flow conditions. This will in general require the use of a standard

potential flow solver such as FLO36. 36

However, an examination of equations (3.13) through (3.18) indicate that the

most natural choice of independent variables in which to solve equation (3.9) are

q'0 and @0, the mean flow potential and stream functions. Since standard potential

flow codes solve the steady problem in terms of the spatial coordinates xl and x2,

there is some difficulty in obtaining the steady solution as a function of ¢0 and 90.

Another difficulty arises due to the fact that the grids used by steady flow

solvers are not suitable for the unsteady calculation. As reported in References 30

and 31, accurate solution of equation (3.9) over a large range of flow conditions re-

quires using grids which are determined as a function of both the reduced frequency

kl and the free stream Mach number Moo. This means that in general it will be

necessary to interpolate the solution from the steady grid onto the appropriate

unsteady grid.

Because of the loss of accuracy that can result from such an interpolation

process, and also because of the need to know the mean flow as a function of _0

and _I'0, an analytical scheme that can obtain the compressible, subsonic flow about

isolated airfoils was developed. The scheme is based on the idea that, except for a

small inner region surrounding the airfoil, the flow gradients are not too large. Thus

in the large outer region extending to infinity, the mean flow is essentially governed

by a set of linear equations. As a result, one can use Gothert's Rule, whereby the

compressible flow about a given airfoil can be obtained from the incompressible flow

about a similar airfoil.

If we let ac, Oc, and 3'c denote the angle of attack, thickness ratio, and camber

ratio of the given airfoil in a compressible flow, then the transformed airfoil for the
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incompressible flow field has angle of attack, thickness ratio, and camber ratio given

by

8i = 8o0 8c I (3.21)7z = #oo 7c

where I subscripts denote quantities from the incompressible flow field. Using

dimensional quantities and denoting the compressible velocity by (U_ + uc, vc)

at the point (x, y) and the incompressible velocity by (U¢¢ + u/, v_) at the point

(xi, yI), the spatial coordinates and velocity in the compressible and incompressible

planes are related by

and

z = x/ (3.22a)

YI (3.22b)
_ = _--[_

Ul (3.23a)
UC- _oo2

vi (3.23b)
vc =/_--_.

It is assumed here that the free stream velocity Uoo is aligned with the x axis, and

that the angle of attack, thickness ratio, and camber ratio of the airfoil are such that

the perturbation velocities are small compared to Uc¢. The potential and stream

functions of the compressible flow field are then related to the potential and stream

functions of the incompressible flow field by

1

_0 -- Voox -- _o02 (_I -- Uooxl) (3.24a)

• o- u_y= i( (3.24b)

Using (3.22), and assuming that all quantities have been nondimensionalized as in

the previous section, equations (3.24) can be rewritten
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- flo_oOI M_xl = 2
(3.25a)

_I = floo% (3.25b)

The problem is then, given (O0, _0), solve equations (3.25) for (OI, _I) and

then use relations (3.22) and (3.23) to determine the spatial coordinates (x, y) and

velocity components (uc, re) of the compressible flow field. If this can be done, then

we have the compressible flow field determined as a function of (O0, q0). Note that

this assumes that we can determine (xi, YI) and (ui, vx) as functions of (OI, _x)-

Since there is a one to one correspondence between (xi, yI) and (Or, ql), and be-

tween (ui, vi) and (Oi, _I), this is not a difficulty. At the least, it can always be

done numerically. For the special case of Joukowski airfoils, however, it is possible

to express the complex potential (Or, ql) in terms of the polar coordinates (r, 8),

and then obtain (xI, yI) and (ul, vI) through known functional expressions of (r, 0).

For the case of incompressible flow around a Joukowski airfoil the complex

potential is given by

a 2e ia` rl In( )+K
or + i _I = ¢'e-_' + _ + _/

where K is an arbitrary constant and

(r = ( _ (o' = rei°"

(3.26)

(3.27)

Here (0' = -e + ie' is a complex constant, and the parameters a, e, and e' depend

on the airfoil geometry. FI is the steady circulation around the airfoil and is given

by

FI = -47ra sin(at + _)
(3.28)

where # is defined by

e' (3.29)
sin # = --.

a
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The spatial coordinates(Zl, YI) are determined from r and 0 through the Joukowski

transformation

where the parameter d satisfies

d2
X I q- i YI --" ¢ -b T (3.30)

(e + d) 2 + _,2 = a 2. (3.31)

Finally, the velocity components (Ul, VI) are given by

¢2[_, + aei(2a,+_)]

UI -- i VI = (¢ + d)¢.,2 - 1. (3.32)

Using relations (3.26) through (3.30), equations (3.25) can be expressed in

terms of r and 0 as

a 2

(r + 7)cos(0- az)- [2a sin(hi +/_)]0 + K

-M_[r cos 0 - _ +
d2(,•cos 0 -

=  oo'I'0(re°sO-e) 2 +(rsinO+e')2 ] 2 (3.33a)

r

(r- _)sin(0- crz)+ 2a sin(a1 + p)ln(a ) = _oo_I,0 (3.33b)

If for given if0 and _I'0 we can solve equations (3.33) for r and 0, then equations

(3.30) and (3.32) can be used to get (Xl, yZ) and (ui, vx), and equations (3.22) and

(3.23) can be used to obtain (x,y) and (uc, vc). Once we have obtained (uc, vc), the

other mean flow quantities can then be obtained from Bernoulli 's law for polytropic

gases.

We note that, while the system of equations (3.33) is highly nonlinear in the

unknowns r and 0, it can be routinely solved by two-dimensional Newton iteration.

Once a subroutine has been developed to solve equations (3.33), the compressible

steady flow around any Joukowski airfoil can be very efficiently obtained. In ad-

dition, the mean flow is obtained for arbitrary if0 and xI'0, so that there is no
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restriction whatsoever on the particular grid that may be used for the unsteady

calculation.

The only limitation in obtaining the mean potential flow by this particular

approach is the underlying assumption that uc and vc must be small compared to

Uoo. This means that the method will not give a good approximation in the inner

region and particularly near the stagnation point where the perturbation velocities

are of the same order of magnitude as U_. However, extensive testing of this

particular approach and comparing with the steady potential flow solver FLO36

has shown that the region of inaccuracy is very small. Figures 1 through 4 show

Mach number comparisons between the present approximate analytical scheme and

FLO36. The comparison is made at grid points along fixed grid lines used by FLO36.

It is seen that the agreement overall is quite good, with the exception of grid points

on the airfoil surface that are near the stagnation point. Because of this inaccuracy,

we use FLO36 to calculate the mean flow quantities along the airfoil surface itself,

and use the approximate analytical scheme off the airfoil except in a small region

just upstream of the stagnation point. In this region, for airfoils that have steady

loading, the velocities are calculated using a Taylor series expansion. For airfoils

without steady loading, the velocities are calculated from a local analytical solution

which is patched to the outer solution.

3.3 Frequency Domain Formulation

An inspection of equations (3.13), (3.14), (3.1S), and (3.20) indicates that the

time dependence of the boundary value problem presented in Section 3.1 comes

entirely through the harmonic term e -ikt'. It is therefore possible to make a trans-

formation from the time domain into the frequency domain by a simple change of

dependent variable. By transforming the problem into the frequency domain, time

is completely eliminated from the problem and it is possible to significantly simplify

the mathematical formulation of the boundary value problem.
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For the case of two-dimensional mean flow, we transform into the frequency

domain by making the following change of dependent variable:

_1 = _ e-ikxt+ikszs (3.34)

By including the ikax3 term in the transformation, the harmonic dependence on the

spanwise component z3 is also eliminated, since all of the e iks_ terms then factor

out from each side of the equation. This is of course possible in view of (3.20) and

(3.15).

Before presenting the governing equation in the new dependent variable _, we

introduce the linear operators £ and/:0 to simplify the notation.

Do 1 Do 1_. (poX_)
Z: = _/( c0-__7) - p0

and

(3.35)

D_ 0 2 0 2 0 2
£0 = M_-_02 (_--_02 + _02 + _-_x32) (3.36)

where

Do 0 0

Dto = _ + 0@---_ (3.37)

The governing equation then takes the form

L¢, = 1¢. (p0u_(R)) + £¢2 (3.38)
P0

The operator £:0 is essentially the operator for the thin airfoil gust response problem.

By writing the governing equation in the following equivalent form, the left hand

side of the equation will exhibit the character of the thin airfoil operator in the far

field since/: ---* JC0 there.

z0¢, + (z- z0)¢, = 1¢. (p0_R))+ _¢_
P0

(3.39)
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We then havein terms of q0

1:0¢1 + (1: - 1:0)¢1 =

s s k21Ms

+ [k 1 M_ U02

CO .M s (3.40)

Equation (3.40) may be simplified further by making the following change of

both dependent and independent variables:

= _)e -iKoe# (3.41a)

where

klM2°° (3.415)

Ko =- /_L

and

• = 0o (3.42a)

=/3oo_0 (3.425)

Expressing equation (3.40) in terms of ¢ and the new independent variables
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and _, one gets

_0¢1 dr (_ -- £0)¢1 =

02¢ 02¢
:,k, ,+,,...:,_o_.__/_[_g__ + -_ + (

2 2k,M_ kg
_ _ )¢ ] (3.43)

0¢ 0¢ _ 0 2¢ 0 2
+ AI¢ + A__b-_ + A_b_ + _'b_ + A_(_W'J

where A1 ...As are functions of (_, _) defined by

A,((_,g2) - k2ML k_M2 ik, U2o 0 M 2
__ v _o _ (-_o) (3.44a)

00___ 4 0 M 2 Ug Opo 1 k_M£- iKo[M2( 2ik,) + U_-._(_o ) p--_ 00 _ + _ _U2o

A2( oh, "_) = M2(O_,,U2
4 0 M 2

po Och
+ 2iKot32Ug

(3.44b)

Opo
A3(O, _) = -/_o_ -°

P0 0_
(3.44c)

A4 (0, q) =/3 L -/_2 U02 (3.44d)

As((I ), _) = 1 - Uo_ (3.44e)
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Note that in the far field tile functions AI...As tend to zero so that the right

hand side of (3.43) reduces to that of the linear thin airfoil theory. 4

To complete the frequency domain formulation, it is necessary to present the

right hand side of the governing equation (3.39). We will refer to the right hand

side of (3.39) as the source term and denote it by e-iktt+iksxsS • To facilitate the

presentation of the source term, we will write the governing equation as

_0 _1 + (_" -- ft-.O) _1 = e-iktt+ik'xa S (3.45a)

or

Z:o¢1 + (£ - 1:0)¢1 = e-iklt+_k_* (S_ + $2 + S3 - S4) (3.45b)

where

e -ikzt+ikaza S1 = VPo . {[_(_.._)]ei_.)_-iktt + _(_} (3.46a)
Po

_-_'+_,_ & = _. {#(_. 2)1__'x-_,' + _} (3.46b)

Do 1 Do¢2

e -iklt+ikzxs S3 = -_'(C02 Dt )
(3.46c)

-,k,,+,_, s, = !_. (poX_¢_)
po

(3.46d)

We also introduce _ and qP2 where

e -iktt+iksxs _ -- (3.47a)

e -iktt+iksxa (_2 = q_2 (3.47b)

The expressions for Sx...S4 are then
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k_M 2 0 .M 2.
s_= - [_ + +k,u#b-+-;_-6[) ]_
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+ [ M2 ( 0_0

0 . M 2 ) 0_o2
2_k,)+ uo'b-_o_-6[1O+o (3.50a)

02_02

+ M_V2 0¢0_

where

0_2 OX_,]
-_o - ik, -gCo _O,

(3.50b)

OXe, 1

0¢o
-- 1 -- -- sgn(_o)¢oe-(¢o+_o)[ _ + sgn(_o) tab-l( )]

poo "x"0

r ¢_oo@0 e-(+o_+,ob
-_¢o2+ 2 2 [1- ]_oo_0

(3.5oc)

02 X_,a OX_,a . 2

0¢o2 _o2 - k_ (_) :2 (3.50d)

r 2 sgn(_o)(1 -- 2¢2)e-(+o2+*o2)[_ + sgn(_o)tan-a( )1
7r

4floo¢o_o _(+o2++g) 2flo0¢o_o e-(¢]+_o 2) }
+¢02+ 2 2 e -- 1-/3oo_0 (3.50e)/_o_'o (¢o_+ 2 2)_[ ]
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The frequency domain governing equation is then given by

_ rkxM_ k_a2 f02¢ 02¢ 2 =

0¢ 0¢ 02¢ • 02¢
+ A1¢ + A_b3 + A3b-_ + A4b-_ + Abb-_

(3.52)

= e_g°'_(S1 + S2 + Ss - S4)

where A1 ...As are defined by equations (3.44) and S, ...S, axe defined by equations

(3.48), (3.49), (3.50), and (3.51). In the fax field both the coefficients A1...A5 and

the source term $1 + S2 + $3 - $4 tend to zero so that the equation reduces to a

Helmholtz equation.

We conclude this section by presenting the frequency domain formulation of

the airfoil and wake boundary conditions given by equations (3.10), (3.11a) and

(3.11b). In terms of the new coordinates (¢, _) and the new dependent variable ¢,

equation (3.10) for the airfoil boundary condition becomes

0¢ eiK°@ alflooF 1 - e -¢2 a2 + iaoalk2 ]eiktX.,l (3.53)
0---_ -- _oo [ 7r _ + 1 + iaokl "

The wake boundary condition (3.11a) becomes

(-ik, + U20-_)[A(¢e-ig°'_ -- _2 )1 = 0, (3.54a)

where A(¢e -ig°'_ - _a2 ) denotes the jump in the quantity (¢e -iK°¢' - _a2 ) across

the vortex sheet behind the airfoil. Finally, condition (3.11b) becomes

A[V(¢e -ig°¢ - _2 )" n] = 0. (3.54b)
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3.4 Transformation into Computational

Coordinates and Formulation of the

Numerical Boundary Value Problem

Our basic numerical approach to solving equation (3.52) is to use the method

of finite difference approximations. By discretizing the flow field and employing

finite differences at each grid point, a large linear system of equations is obtained

which can be solved using a matrix solver.

Previous experience in solving equation (3.52) for the case of flat plate and

symmetric airfoils has shown that the independent variables (cI,, q) are not suitable

computational coordinates for the gust response problem. 3°,31 There are difficulties

in obtaining consistently accurate results over a large range of Mach numbers and

reduced frequencies, and also problems with the implementation of far field bound-

ary conditions. A transformation of the independent variables is needed which not

only provides an adequate distribution of grid points around the airfoil in the near

field, but also provides a distribution of grid points in the far field which is suitable

for acoustic wave propagation and the implementation of far field, radiation type

boundary conditions.

In order to satisfy these requirements, we make a transformation into the elliptic

coordinates (r/, () with the transformation

= cos(.o)cosh(.¢) (3.55a)

_I' = a* sin(7rr/)sinh(Tr_) (3.55b)

where a* is an arbitrary constant which will be defined later. Note that in the far

field the elliptic coordinates reduce essentially to cylindrical coordinates, and that

the ¢ - _ plane is mapped into a semi-infinite strip in the r/- _ plane.

With this change of variables, the governing equation takes the following form:
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f12 , 02¢ O2¢ k_ M_ k_ ] ¢ l

00 0¢ .. 02¢ 02¢ 02¢

= e_°*(S1 + $2 + & - &) J(_,_).

Here J(r/, _) is the Jacobian of the transformation (3.55) and is given by

J(r/,_) = r2a*2[sin2(rr/) + sin-h2(Tr_)],

and T1...T5 are functions of (77,_) defined by

(3.56)

(3.57)

Tl(r/, _) = a*Tr A2C3(y, _) + a*TrflooAsC4(7?,_)

A4C1 (TI,_)
+ a'2_2_°° J('7,_)2

.2 2_3 AsCs(rI'_)

+a 7r Poo j(_7,_)2
(3.58a)

T2(_, _) "-- -a*Tr A264(_, _) + a*Tr_oo A3C3(r], _)

A4C2(y,_) ,2 2_3 AsC6(rl,_)

+a'2_2_oo j(r/,_)2 +a r Poo j(77,_)2
(3.58b)

A4C3(r/, _)2
T3(_, _):- a'2_'2 j(_, _)

.2 2n2 A5C4( rb_)2

+a 7r Poo j(_/,_)
(3.58c)

A4C4(_,_)2
T4(_,_) =,,2,_2 J(_,_)

___a'27l-2_2 A5C3(_,_)2
J(,,_)

(3.5Sd)
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Ts(r/,_)=-2a*27r 2 A4Cs(rl'_)C4(rl'_)
S(¢,_)

+ 2_,,_ 2Z_ A5C_(,1,_)C,(,7,_)
S(,,_)

and where C1 ...C6 are functions of (r/, _) given by

71"

C_(r/, f) = _ sinh(r_) cosh(_'f){ J(q,_)

+ 2a*_r2[sin2(rr/)cos2Orr/) - sinh_(rr_) cos2Orr/)] }

CuO?,_) = _--_sin(_'rl)cos(_'r/) J(rl,_)

(3.59a)

+ 2a*2_r2[sinh2(_r_)cosh2(zr_) - cosh2Or_)sin2Orr/)] }
(3.59b)

C3(r/, _) = sinhOr_) cosOrr/) (3.59c)

C4(r/, f)= coshQr_) sinQrq) (3.59d)

7r

Cs(r/, f) = _ cosh0r_) sinh0r_) { S(r/, _)

_ 2a*27r2[sin20rq) cosh2Qr_) + sin2Orr/) cos2Orr/)]}
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7r . cos(Trr/){ J(r/,¢)

- 2a*27r2[sinh2(Tr¢) cosh2(_r¢) + sinh2(lr¢)cos2(rrr/)] }
(3.59f)

As before, A1 ...As are defined by equations (3.44).

The airfoil boundary condition (3.53) has also been transformed through the

change of variables (3.55). Expressing condition (3.53)in the variables (r/,_), one

gets

0¢ sinQrrl) eit'¢°a'
,9¢ - a*_ ---Z--£-[

_4, 2
al/_ooF 1 - e a2 + iaoalk2

+ ]e iktx`'_ (3.60)
7r _ 1 + iao kl

We now proceed to discuss the remaining boundary conditions. First, the wake

boundary condition (3.543) may be integrated so that it becomes

Z_(¢e-'_0.) = AV_ + [A(¢e-'_°*),._.- AV_,.Ae'*'f:'° _, (3.61)

where the subscript t.e. denotes quantities at the airfoil trailing edge. Note that,

in general, both ¢ and (I) are discontinuous across the wake, so that in evaluating

A(_e-ig°'b), it is necessary to take into account the jump in both ¢ and _. This

condition is imposed for grid points on the lower side of the wake.

On the upper side of the wake, we impose condition (3.54b), which specifies

that the normal velocity component of the unsteady velocity is continuous across

the wake. This may be written

[ 00 /]+__[ 00b-_(¢e - _2 _-_(¢e - (3.62)

where "+" and "-" superscripts denote above and below the wake, respectively,

and the derivatives in (3.62) are taken to be one-sided.
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In order to proceed further in the development of the boundary conditions

(3.61) and (3.62)in terms of the computational coordinates (rl,_), it is necessary

to first discuss in more detail the transformation (3.55). First, the constant a* is

determined from the condition that the airfoil trailing edge point on the suction side,

where q_ = a*, @ = 0, should map into the point r/= 0, _ = 0, and the stagnation

point, where @ = -a*, $ = 0 should map into the point r/ = 1, _ = 0. Then a*

must be determined from

a*= 1_['"Uods (3.63a)
2 J,._.

where s denotes the arc length along the airfoil surface, t.e. denotes the airfoil

trailing edge, and s.p. denotes the stagnation point. The steady solver FLO36 is

used to locate the stagnation point, and the integration in (3.63a) is carried out

using trapezoidal integration.

The suction surface of the airfoil, then, corresponds to the line segment on the

q axis between 0 and 1, and the pressure surface corresponds to the line segment

on the 7/axis between 1 and r/t.t.-, where r/t.,.- < 2.0 (See Figure 5.) The value of

_t._.- is determined from equations (3.55a) and (3.33a), and is given by

rlt.e ._ = 2--- COS * 2
71" (2 #¢0

- M_ acos,-e + a2 2a(dsin/_+_cos/_)+e 2+dz ' (3.fi3b)

where the constant K is determined from (3.33a) and (3.63a) and is given by

K = a - cos( + +. sin( +

[ d (a cos. - ]+ M_ acos/_-e+ a2_2a(e, sin/t+ecos_t)+e _+e '2 '

and the parameters a, d, e, e', and _ are as defined in Section 3.2.

(3.63c)

The pressure side of the wake, then, corresponds to the line segments given by

{T/t.e.- < 7/ < 2.0, _ = 0}, and {7/ = 2.0, _ > 0}. The suction side of the wake
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correspondsto the positive _ axis. The upper boundary of the T/- _ grid, which is

given by {_ = _,,=_, 0 < 1/<_ 2}, corresponds to the far field boundary in the (I) - @

plane.

Because of the discontinuity in ,I, across the wake grid line, the grid points on

the upper and lower sides of the wake in the physical plane (the Xl - x2 plane)

do not coincide. This presents some difficulty in the implementation of boundary

conditions (3.61) and (3.62), inasmuch as these conditions both specify a relation

that must be satisfied across the wake. The difficulty can be removed, however, by

simply using a linear averaging of ¢ at the two adjacent grid points to represent

¢ at an arbitrary point in between. Using such a linear averaging, then, boundary

condition (3.61), which is imposed for wake grid points on the pressure side, becomes

-,/<o,I, '" f::_ "_o (3.64)= + •

The discontinuity in • across the wake also leads to a shift in the location of

the corresponding grid points in the physical plane on opposite sides of the wake.

Because of this shift, the last several grid points on the pressure side in the physical

plane extend past the last suction side wake grid point, so that the above averaging

technique cannot be employed. (See Figure 5.) However, because these last few

points are in the far field where the mean flow is nearly uniform, the function ¢

behaves essentially as in the case of the thin airfoil problem, and is approximately

an odd function of _. By assuming ¢ to be an odd function with respect to • in

the far field, condition (3.61) becomes

1 -,Ko* ikl f_* v_° (3.65)
- 1/k_: _[A(_/,e )i.e.- AcP2t.e.le "
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for extra far field wake grid points on the pressure side.

For wake grid points on the suction side, the linear averaging technique can be

used for all points, and condition (3.62) becomes

[LU0 - =

Expressing this in rl and _, one gets

(3.66)

[e_i_:o,_ Uo 0¢ + [e_igo# Uo 0¢ -sinh-(-(r_) _] - -_']sin(_'rl) a,,g

= vg (o_o_+
OqJ ) (3.67)

when the averaged values of ¢ lie on the r/axis. When the averaged values of ¢ lie

on the right hand boundary of the r/- _ grid {r/= 2.0, _ > 0}, (3.66) becomes

[_-_s-o, uo 0¢]+_[e_im, u0 0¢-
sinh(_r_) Or/ sinh(lrf) Oq] ava

= U+ (0_02÷ 0_0_- ) (3.68)
0-_ 0v

In order to complete the formulation of the boundary conditions, it is only

necessary to specify conditions at the airfoil trailing edge and in the far field. At

the trailing edge, there are two grid points that coincide, one corresponding to the

suction side of the airfoil and onc corresponding to the pressure side. It is therefore

necessary to impose two conditions at the trailing edge point. At the point on the

suction side, which corresponds to (r/, _) = (0, 0), the Jacobian of the coordinate

transformation (3.55) vanishes. Since the Kutta condition requires that the velocity

at the trailing edge be finite, we are led to the requirement that

0¢
= 0 at (q,_) = (0,0). (3.69)

07
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At the pressure side trailing edge point, we impose the condition that the

unsteady pressure is continuous,

P't.e.+ = P't.e.- at (r/,_) = (r/t.e.-,O). (3.70)

We point out that since the Jacobian vanishes at the suction side trailing edge

point, it is not possible to directly calculate the pressure in the (r/, _) coordinates

at that point. However, it can be calculated using a Taylor series expansion from

neighboring points. By using this approach, condition (3.70) can be satisfied.

In presenting the far field boundary condition, we first comment that while

condition (3.12) expresses the mathematical requirement that V¢1 ---* 0 at upstream

infinity, this condition cannot be imposed throughout the far field on a boundary

at a finite distance from the airfoil. To implement such a condition would impose a

reflecting boundary condition which can lead to large errors in the solution.

To correctly model the physics of the present unsteady boundary value prob-

lem requires that the far field boundary condition be such that it allows outgoing

acoustic waves to leave the solution domain without being reflected back into the

computational grid. This can be accomplished, for example, by using separation of

variables along with a series expansion for the far field solution ¢ and only accepting

those terms in the series which represent outgoing waves. The difficulty with this

approach, however, is that it leads to a matrix which requires pivoting and therefore

longer solution times. In addition, since ¢ is not continuous across the wake, but

the series expansion for ¢ is continuous everywhere, there is an incompatibility near

the wake which can lead to a poor solution in the far field.

An alternative to the series expansion approach is to use a Sommerfield radia-

tion condition on the unsteady pressure. This approach avoids both the difficulties

associated with the series expansion method and is also easier to implement. The

Sommerfield radiation condition for the pressure is the approach used in the present
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work, and may be written in operator notation as

where

(3.71)

= R cos O

= Rsin O.

Neglecting 1 0/_ _ terms, this reduces to

(3.72a)

(3.725)

,',02¢ [_(k]M_)2 _ kl 0¢-¢ )  osO+

kl r / klM_ k31

This condition is applied for all grid points such that 0 < r/< 2, _ = _max.

3.5 Numerical Method

(3.73)

In the previous section we presented the transformation into computational

coordinates and the development of the numerical boundary value problem. The

problem to be solved numerically consists of the governing equation (3.56), and the

boundary conditions (3.60), (3.64), (3.65), (3.67), (3.68), (3.69), (3.70) and (3.73).

As mentioned previously, our basic numerical approach is to use the method of

finite difference approximations, and then to solve the resulting linear system of

equations using a matrix solver.

The first step in obtaining numerical solutions to equation (3.56) and its as-

sociated boundary conditions for a given flow configuration is to calculate the

source term S and the coefficient functions A1...As. This requires the evaluation

of Lighthill's drift function and its first and second partial derivatives with respect
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to _, and the evaluation of the mean flow quantities and their partial derivatives

with respect to • and • at each interior grid point. The mean flow quantities

are obtained through the scheme presented in Section 3.2, and their derivatives are

calculated using four point differencing.

It should be emphasized that accurate evaluation of the source term is essential

if accurate solutions to equation (3.56) are to be obtained, and this in turn depends

largley upon the accurate calculation of the drift function. If the drift function

is not calculated accurately, then the source term will not tend to zero in the far

field and the numerical scheme will become unstable. One of the major advantages

of using the analytical scheme outlined in Section 3.2 to obtain the mean flow is

that it can determine the mean velocities at arbitrary (_, _I'). This means that

for fixed _, i.e. on a given streamline, we can determine the mean velocities for

arbitrary _. Since evaluation of the drift function requires the integration of the

expression (_00 - u1---_) with respect to • on a fixed streamline, it is very easy to

do the numerical integrations necessary to accurately evaluate the drift function

A. In the actual calculations, we evaluate A at a given grid point as the sum of

an analytically determined part and a numerically determined part. The analytical

part comes from a far field expansion for A which is given by

7r

A ---- fro -- F--sgn(_o)[_ + sgn(_o)tan-l( ¢I'o )] (3.74)

This expression can be used to accurately calculate A at some point far upstream,

and then since A is additive, the remaining portion of the integration can be done

numerically from the upstream location to the given grid point. The numerical

integration is done using the trapezoid rule with variable spacing in ¢ to ensure

accurate resolution near the airfoil. The first and second partial derivatives of A

are approximated using four point differencing.

Once S and A1...A5 have been calculated, they can be stored separately and

passed to the subroutine which sets up the matrix equation to be solved.
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We now proceed to discuss the differencing used for the governing equation and

boundary conditions. To represent equation (3.56) we use the standard nine-point,

central difference computational molecule which is second order accurate in r/and _.

(Nine points are required due to the mixed derivative term.) We assume in general

that the spacing in each direction is nonuniform. Details of the grid spacing will

be discussed momentarily. Each of the boundary conditions (3.60), (3.69), (3.70),

and (3.73) are implemented using four-point, one-sided differencing which is third

order accurate for (3.60), (3.69), and (3.70), and second order accurate for (3.73).

Boundary conditions (3.67) and (3.68) are both implemented using three-point,

one-sided differencing which is second order accurate.

Obtaining a numerical solution to the finite difference equations representing

the governing equation (3.56) and its associated boundary conditions requires solv-

ing a large matrix equation whose size is equal to twice the number of grid points.

There are difficulties in solving this linear system of equations because the matrix

is not block tridiagonal and does not have a regular block structure which can be

exploited. In addition, iterative solvers have convergence problems because the di-

agonal dominance of the matrix changes as the parameters Moo, kl, and k3 are

varied.

Because of these difficulties, a general purpose sparse matrix solver was devel-

oped which stores only the nonzero entries of the matrix and can solve an arbitrary

sparse matrix equation using Gaussian elimination. The solver basically works by

using an ordered list to represent the nonzero entries of each row in the matrix,

and then inserts and deletes new entries in the rows of the matrix as multiples of

each row are added to other rows to carry out the elimination process. The only

requirement for the solver to work is that the matrix must be arranged such that

it remains reasonably sparse during the elimination procedure.

The sparse solver has both a pivoting and non-pivoting feature. However,

as pivoting during the elimination process proved to be unnecessary, the pivoting
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feature was not used. By not pivoting during the elimination, it was possible to

increase the storage efficiency of the solver and thereby solve larger systems of

equations. The increased storage efficiency was gained by using a mapping function

to map sub-blocks of the rectangular two-dimensional arrays containing the nonzero

entries of the matrix and their associated column numbers into singly dimensioned

arrays which contained less unused storage. By using this technique, the storage

efficiency of the solver was increased by about 25 percent.

The final issue to be discussed in regard to our numerical scheme is the method

of grid determination. As reported previously 3°'31, it is not possible to use a single

grid and obtain accurate solutions to the gust response problem for a large range of

reduced frequencies. Rather, the unsteady grid must be determined as a function

of both the mean flow Mach number and the reduced frequency.

This requirement is dictated by both the accuracy of the far field boundary

condition (3.73), and the need to adequately model the airfoil boundary condition

(3.63) and the wake boundary conditions (3.64) and (3.65). The accuracy of the far

field boundary condition depends on the reduced frequency kl and free stream Mach

number Moo in such a way that the parameter -_R, where R is the distancc to

the far field boundary, should remain at least O(1). This shows that the location of

the outer boundary of the grid must be determined as a function of kl and Moo. In

addition, there should be enough grid points per wavelength to accurately represent

the airfoil and wake boundary conditions. Due to the harmonic terms containing the

parameters K0 and kl, this shows that the r/and _ spacing have to be determined

as a function of kl and Moo.

The spacing in the 77 direction is constant for 0 < r/ < 1, and then changes

slightly but constant again for 1 < r/ < r/t.,.-, and finally constant again, but

slightly different from the two previous intervals, for r/t.,.- < r/< 2. The spacing on

0 _< 77 < r/t.e.- determines the spacing on the airfoil surface. Normally the number

of grid points in the r/direction varies from 40 for the low frequencies up to about
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70 for reduced frequencies of 4.

An optimal spacing of the grid points in the wake (the _ direction) turns out

to be more difficult to achieve than the spacing on the airfoil. Numerical studies

of the thin airfoil gust response problem showed that the optimal choice of spacing

was 12 uniformly spaced grid points per wavelength. For the case of the thin airfoil,

the wake boundary condition analogous to condition (3.64) is much simpler, and it

is possible to choose the spacing of the _ grid points such that they are uniformly

spaced along the waves. However, for the general problem of nonuniform mean

flows, the waves in the wake are distorted due to the e ikl f:.'. v_o term, and it is

no longer possible to determine the grid point spacing such that they are uniformly

spaced along the waves. This does not prove to be a difficulty, however, because

in the far field the general problem of vortical flows past a lifting airfoil reduces

essentially to a linear problem as the mean flow tends to become uniform. So we

may determine the wake spacing as in the case of the flat plate airfoil, and in the

far field the grid points will be nearly uniformly spaced along the waves.

For a flat plate airfoil, the wake boundary condition which imposes the conti-

nuity of the pressure is given, corresponding to the transformation (3.55), by

• k * coshOrG )-a*] (3.75)

In order to have uniformly spaced grid points along the waves in the wake, the

argument of the exponential function should vary by equal fractional increments of

7r. To place 12 grid points per wavelength, we are then led to the requirement that

the location of the j th _ grid point be determined from the relation

kl - , 2r

P_o-b-_[acosh(_r_)) - a*] = j -_. (3.76)

Solving for _i, we get

This is the method for determining the _ spacing in the far field. Near the airfoil

the above procedure leads to a spacing which is too coarse to be used. So near the
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airfoil we useuniform _ spacing which remains constant at some value A_, until a

point is reached such that the _j determined from (3.77) satisfy _j+l - _i -< A_.

From that point on, the spacing of the _ grid points is determined from (3.77).
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CHAPTER IV

NUMERICAL RESULTS AND DISCUSSION

4.1 Code Validation

Extensive efforts were taken to validate the computer codes which were de-

veloped to implement the numerical solution procedure which was outlined in the

previous chapter. The validation process consisted of a combination of compar-

ing numerical results with known analytical solutions to the classical thin airfoil

gust response problems, comparing with the second order theory of Goldstein and

Atassi 7 and Atassi, s comparing with the first order numerical results of Atassi and

Grzedzinski, 29 and calculating solutions to limiting case problems i.e., as Math

number, thickness, angle of attack, or camber go to zero.

Sample computation times for the results presented varied considerably, de-

pending on the reduced frequency, Maeh number, and airfoil loading. For thin,

unloaded airfoils, with low reduced frequency gusts, typical solution times were

about 20 seconds per frequency on the Cray X-MP at the NASA Lewis Research

Center. The higher frequencies for these airfoils required on the order of 60 CPU sec-

onds per frequency, with slightly higher solution times for the higher Maeh number

cases. For symmetric, unloaded airfoils with nonzero thickness, the solution times

ranged from about 40 seconds for the lower frequencies up to about 150 seconds for

the highest frequencies. Finally, for loaded airfoils, the solution times ranged from

about 250 seconds for the low frequencies up to around 1200 seconds for the highest

reduced frequencies. No effort was made to optimize the computational efficiency

of the scheme, as our main purpose was to validate its accuracy.

In the results that follow, comparisons are made for one-dimensional (trans-

verse) gusts, two-dimensional (transverse and longitudinal) gusts, and fully three-

dimensional gusts. See Figures 6, 7, and 8.
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The first step in the validation process was to compare numerical results with

known solutions to the classical thin airfoil gust response problems. In Figures 9

and 10 we present comparisons between numerical and analytical results for the

normalized unsteady lift for vortical flows past flat plate airfoils. The normalized

unsteady lift, commonly called the response function, is defined by

L' (4.1)
RL(kl,ka,Moo)- _rpoocUcclale,w,

where L' is the unsteady lift. Figure 9.a shows a comparison between numerical

results and the Sears solution 2 for the case of a one-dimensional (transverse) gust

in incompressible flow, and Figures 9.b and 9.c compare numerical results and an-

alytical results obtained from a Possio solver for a one-dimensional gust at Mach

numbers of .5 and .8. The reduced frequency values at which the comparisons are

made range from 0 to 4.0, and are shown below the plots. The point on the real

axis and furthest to the right corresponds to kl = 0, and the other points along

the curve correspond in order to the other reduced frequency values. Figures 10.a

through 10.c compare numerical results and analytical results from a Possio solver

for three-dimensionai gusts for Mach numbers of .1, .5, and .8. The conditions on

the gust wave number parameters are shown below the plots. As can be readily

seen, there is excellent agreement between the numerical and analytical results. The

only loss of accuracy occurs when both the Mach number and reduced frequency

become large.

In order to assess the accuracy of the present numerical scheme for vortical

flows around thin airfoils in which the mean flow is not uniform, we compare with

the second order theory of Goldstein and Atassi 7 and Atassi. 8 The results given by

Atassi assume a zero thickness airfoil, but account for the effects of camber and angle

of attack on the airfoil unsteady response. In Figure 11, we compare the numerically

computed response function with the second order theory for an incompressible flow

with a two-dimensional gust about an airfoil with an angle of attack of two degrees

and a camber ratio of .05. The numerically computed response function is for a 6%
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thick Joukowski airfoil, while the second order theory does not take into account the

airfoil thickness. The reduced frequency values used for the comparison are shown

below the plot. As can be seen, the numerical results for the 6% thick airfoil show

a slightly larger lift at the low frequencies, but a slightly smaller lift at the higher

frequencies for kl up to about 3.0. As will be seen later in the discussion on the

effects of airfoil thickness, this effect can be attributed entirely to the thickness of

the airfoil, so that the agreement is very good for reduced frequencies ranging from

0 up to about 3.0. For the frequencies higher than 3.0, it is not possible to make

any firm conclusion on the accuracy of the numerical results.

It should be mentioned at this point that the numerical results in the present

work assume that the origin of the imposed upstream gust is at the center of the

airfoil. Due to the representation of the gust given by (2.47), the gust will not

appear to be centered at the airfoil center and there will be a corresponding phase

change in the unsteady lift and moment. For a Joukowski airfoil with an imposed

upstream gust of the form (2.47), it can be shown that the unsteady lift and moment

should be multiplied by the phase correction factor Pc given by

' W '
Pc = ei[kt(2_'-W"'"-zc) + k_(-_¢In2- o,,-Y,)I (4.2a)

in order for the gust to be referenced with respect to the airfoil center. Here

Wo,,. + i Wo,i is the complex constant associated with the complex potential for

t aa--ld tthe incompressible flow around the transformed Joukowski airfoil, and x c yc

are the coordinates of the airfoil center rotated through the angle of attack c_. These

parameters are given by

and

Wo,,. = e cos a - e' sin a + K (4.2b)

Wo,i = -esin_- e'cosa- --
F

2_"
lna (4.2c)

l
x c = xccosa + ycsina (4.2d)
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!/c = Yccosa -- xe sin a (4.2e)

where

• = 2d- I (4.20

2de' (4.2g)
_/c - d+e

and the chord length of the airfoil is 2. The parameters e, e', a and d are as defined

in Section 3.2 and the constant K is given by equation (3.63c). Note that for airfoils

with zero thickness and zero mean loading, the phase correction factor Pc reduces

to just 1.

In the results given in Figure 11, the second order theory assumed a zero

thickness airfoil. In order to to validate the numerical scheme for airfoils with

thickness, we compare with the first order results of Atassi and Grzedzinski. 29 In

Figure 12, we show comparisons for one-, two-, and three-dimensional gusts for

incompressible flows around a 12% thick Joukowski airfoil with zero degrees angle

of attack and zero camber ratio. The reduced frequency values for the comparison

range from .2 to 2.5 and are shown below the plots. We limit the comparison to

this range of kl, since this is roughly the range of validity of the Green's function

approach of Atassi and Grzedzinski. The agreement between the two sets of results

is good in general.

The final step in the validation process was to calculate the solutions to various

limiting case problems. The limiting case of Moo "-4 0, i.e., the incompressible case,

was covered above where the numerical results were compared to the Sears solution.

We now present results for the limiting cases of airfoil thickness, angle of attack,

and camber.

In Figures 13 through 16, we compare numerical results for the unsteady lift

and moment about the airfoil center of a 3% thick, symmetric Joukowski airfoil with

that of a flat plate airfoil with zero thickness. Analogous to the response function

RL for the unsteady lift, we define the response function RM for the unsteady
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moment by

M I

nM(kl,k3,goo) =  pooc2Vool le, , (4.3)

where M' is the unsteady moment about the airfoil center. Figures 13 and 14

present results for Moo = .1, and Figures 15 and 16 present results for Moo = .6.

For both Mach numbers, it is seen that the small airfoil thickness has little effect on

the unsteady response, except for high reduced frequencies in the two-dimensional

gust case, where the magnitude of the unsteady lift is reduced by 15 - 20 percent.

It would appear from these results that thickness effects become more important at

the higher frequencies for the case of the two-dimensional gust.

Figures 17 and 18 present comparisons between results for a 12% thick sym-

metric Joukowski airfoil at zero degrees angle of attack and one degree angle of

attack. All plots are for a free stream Mach number of .1. As in the case of airfoil

thickness, the strongest effect is seen in the two-dimensional gust case. However,

here there is a significant effect both for the low and high reduced frequencies. At

the low frequency end, the effect is primarily a reduction in the magnitude of the

unsteady lift, while at the high end it is primarily a change in phase of the unsteady

lift. We also point out that, in agreement with the theoretical results of Atassi, _

for the transverse gust case in which the gust has only an upwash component, the

steady loading on the airfoil has virtually no effect on the unsteady lift.

Finally, in Figures 19 through 20, we compare results for a 12% thick Joukowski

airfoil with no camber with a 12% thick Joukowski airfoil with a camber ratio of

.02. The free stream Mach number for all plots is .1 and the angle of attack is

zero degrees. The effect of the small airfoil camber here is exactly analogous to the

effect of small angle of attack above, except that here the effect is stronger due to

the increased steady loading on the airfoil. For the airfoil with one degree angle

of attack, the steady lift coefficient was .12, while for the 2% cambered airfoil the

steady llft coefficient was .27. In each case, the reduction of the quasi-steady lift

(kl ---, 0, k2 ---' 0) for the two-dimensional gust is directly proportional to the steady
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loading on the airfoil with a proportionality constant of 0.26. Using the theoretical

results of Atassi reported in Reference 8, it can be shown that for zero thickness

airfoils in a two-dimensional gust in incompressible flow, the reduction in the quasi-

steady lift for airfoils with small camber and angle of attack is proportional to the

steady lift coefficient with a proportionality constant of !l_,_ = .23. The difference

between the numerical and theoretical values of the proportionality constant can

be accounted for by the fact that the theoretical result does not account for the

thickness of the airfoil.

Before concluding the present section, the author would like to emphasize the

significance of the method of grid determination which was outlined in Section 3.5.

In Figure 21 we present numerical results which demonstrate the kinds of errors that

can occur as a result of using an inappropriate grid. The results shown in these

figures were generated without determining the grid as a function of the reduced

frequency. For each case shown, the same grid was used for all frequencies in the

calculation. The grid used for each Mach number was the one normally used only

for the highest reduced frequency. By using the grid for the highest frequency, it

was assured that there would be sufficient grid resolution to resolve the waves for

the lower frequencies. But as can be seen, the agreement is not nearly as good as

when the grid is determined as a function of both the Mach number and reduced

frequency. These results show the effect of keeping the outer boundary fixed, and

not varying it with the reduced frequency in order to ensure that the representation

of the far field boundary condition is sufficiently accurate.

The results in Figure 22 show the kinds of errors that can occur when the

grid points are not suitably spaced in the far field. The grids used for the results

in Figure 22 used an exponentially decreasing spacing which was varied to ensure

that there were enough grid points per wavelength to adequately model the wavelike

structure of the solution. In addition, the location of the far field boundary was also

varied to ensure that the far field boundary condition would be sufficiently accurate.
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However,as the results show, there are large errors in the response function curves.

This is due to the fact that exponential spacing is not suitable for this kind of wave

propagation problem.

4.2 Discussion of Numerical Results

Our major purpose in the presentation and discussion of numerical results is

to demonstrate the effects of airfoil thickness, angle of attack, camber, and Mach

number on the airfoil unsteady response to imposed upstream rotational velocity

disturbances (gusts). We will examine in detail the effects of each of these pa-

rameters on the unsteady lift and moment of airfoils subjected to one-, two-, and

three-dimensional gusts. First we will examine the effects of airfoil thickness, then

the effects of mean loading through both angle of attack and camber, and finally

the effects of Mach number.

Before presenting the unsteady results, we show plots of the mean flow Mach

number at the airfoil surface for the various flow configurations that were considered

in the present work. These plots are shown in Figures 23 through 43. Plots of the

airfoils used for these calculations are shown in Figures 44 and 45. We also present

sample computational grids used for the unsteady calculations in Figures 46 through

61. Since for each airfoil geometry a different grid was used for every Mach number

and reduced frequency, these represent only a very small fraction of the unsteady

grids used to generate the results that follow.

4.2.1 Effects of Airfoil Thickness

on the Unsteady Response Functions

In Figures 62 through 82, we present results that demonstrate the effects of

airfoil thickness on the unsteady response functions. Figures 62 through 68 show

results for the one-dimensional gust case, Figures 69 through 75 show results for the

two-dimensional gust case, and Figures 76 through 82 show results for the three-

dimensional gust case. For each of the three cases, we begin by comparing results
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for unloaded flat plate airfoils versus results for unloaded, symmetric airfoils with

a thickness ratio of .12. Comparisons are made at Mach numbers of .1, .5, .6, and

.7. At a Mach number of .8, there is a strong shock on the 12% thick airfoil, and

so for this case we compare the flat plate results with results for a 6% thick airfoil.

The comparisons for the unloaded airfoils are followed by comparisons for airfoils

with mean loading. Here we compare results between airfoils with thickness ratios

of .06 and .12. Each airfoil has an angle of attack of 2 ° and camber ratio of .05. We

compare results at Mach numbers of .1 and .5.

An examination of the results indicates that there is a significant difference

in the effects of airfoil thickness on the unsteady response functions depending on

whether the gust is one-, two-, or three-dimensional, and also depending on the

Mach number. We will discuss the one-dimensional gust case first, then the two-

dimensional case, and finally the three-dimensional case.

For the one-dimensional gust, it is seen that the effects of thickness at the

lower frequencies, i.e., for kl ranging from 0 up to about .2, is primarily to increase

the magnitude of the unsteady response, while the phase is only slightly altered.

The results for the unsteady moment show that for this range of frequencies the

effects of thickness are essentially the same irrespective of the Mach number. For

the unsteady lift, however, the effects of airfoil thickness becomes stronger with

increasing Mach number. At a Mach number of .1, for example, there is an increase

in the quasi-steady lift (kl ---* 0) from the flat plate to the 12% thick airfoil of 9.1%.

At the .5 Mach number, however, there is a 10.9% increase, and at the .6 and .7

Mach numbers, there is a 12.5% and 15.7% increase, respectively. As the reduced

frequency increases above about .2, the airfoil thickness has a significant effect on

both the magnitude and phase of the unsteady response. The plots for the unsteady

lift show that the change in phase at the highest frequencies depends strongly upon

the Mach number. At a Mach number of .1, the phase of the unsteady lift for the

thick airfoil lags the corresponding phase for the flat plate, but at a Mach number
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of .5, the phases are about the same, and for higher Math numbers, the phase of the

lift for the thick airfoil leads the phase of the flat plate airfoil by an amount that

increases as the Math number becomes higher. This is in contrast to the effect of

thickness on the phase of the high frequencies of the unsteady moment, where the

phase of the thick airfoil always lags the phase of the flat plate airfoil, irrespective

of Math number. We also note that the magnitude of the unsteady moment at the

higher frequencies is strongly affected by the airfoil thickness as the Mach number

increases.

The above results are all for symmetric airfoils without mean loading. In Fig-

ures 67 and 68, we present results demonstrating the effects of airfoil thickness on

the unsteady response for airfoils that have steady loading. As mentioned previ-

ously, the results in these figures are for 65{ thick versus 12% thick airfoils, with

a camber ratio of .05 and angle of attack of 2 °. Results are shown for Mach num-

bers of .1 and .5. It is seen that the unsteady lift for the loaded airfoils in the

one-dimensional gust case is affected by airfoil thickness in an analogous way to

the unloaded airfoils. The general trend is for the magnitude of the unsteady lift

of the thicker airfoil to be increased at the lower frequencies, while at the higher

frequencies the magnitude is reduced and the phase is also altered. The results

for the unsteady moment show little change with increased airfoil thickness for the

airfoil configurations used in these figures.

We now turn to discuss thickness effects for the case of the two-dimensionai

gust, i.e. a transverse and longitudinal gust. We begin our discussion with the

comparison between the flat plate results versus the thick symmetric airfoil results

in which there is no mean loading on the airfoil (See Figures 69 - 73.) There are

noticeable differences in the effects of airfoil thickness between the one- and two-

dimensional gust cases.

At a free stream Mach number of .1, it is seen that the effect of thickness is

to increase the magnitude of the unsteady lift at the lowest frequencies by about

60



9%, while at the highest frequencies the magnitude is reduced by nearly 40% and

the phase has been shifted by about -90 °. Remarkably, there is a range of reduced

frequencies, roughly 0.45 < kl < 1.6, where the thickness has virtually no effect on

the unsteady lift and moment.

It is interesting to note that as the Mach number increases, the effect of airfoil

thickness at the lowest frequencies actually decreases. The reason for this unex-

pected result is not known at the present time. Recall that for the one-dimensional

gust case, the effects of airfoil thickness became stronger for the low reduced fre-

quencies as the Mach number increased.

Figures 74 and 75 show the effects of airfoil thickness for the two-dimensional

gust case for the two loaded airfoil configurations that were described earlier. For

the unsteady lift, the general trend at both Mach numbers is for the magnitude

of the unsteady response function for the thicker airfoil to be increased at the low

frequency end and decreased at the high frequency end. The unsteady moment

plots show almost no thickness effects. These results are essentially analogous to

the previous results for the unloaded airfoil case, except that the previous results

showed a stronger effect due to the fact that the comparison was between a 0%

thick and 12% thick airfoil, rather than 6% and 12% thick airfoils.

We conclude our discussion of airfoil thickness effects by looking at the results

for the case of three-dimensional gusts (See Figures 76 - 82). We note first that the

effects of thickness for three-dimensional gusts are noticeably different than for one-

and two-dimensional gusts. There are two main differences which are apparent.

First, for the low reduced frequencies, airfoil thickness does not lead to an

increase in the magnitude of the unsteady response functions when the gust is

three-dimensional. For Mach numbers up to .6, there is no significant difference in

the response function magnitude on the low frequency end. However, for the .7 and

.8 Mach numbers, the results show that the magnitude of both the unsteady lift and

moment are noticeably reduced for the thick airfoil for reduced frequencies ranging
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from 0 up to about .2. This is in direct contrast to the one- and two-dimensional

gust cases where the magnitude of the unsteady response was in general increased

for the thicker airfoil for this range of reduced frequencies.

The second major difference in the effects of thickness for the three-dimensional

gust case versus the one- and two-dimensional cases is that there is a strong effect

on both the magnitude and phase of the unsteady response functions in the mid-

frequency range, i.e., for kl roughly between .3 and 1.0. The results show that

for this range of reduced frequencies, especially for the higher Mach numbers, the

magnitude of the unsteady lift and moment is significantly increased for the thicker

airfoil. In the one- and two-dimensional gust cases, the effects of airfoil thickness

were strongest at the low and high reduced frequencies, rather than for the middle

range of frequencies.

Finally, we note that for the high reduced frequencies at all Mach numbers

shown, the magnitude of the unsteady hft and moment is significantly reduced for

the thicker airfoil. This is the main respect in which the three-dimensional gust

results for thickness effects resemble the one- and two-dimensional gust results.

4.2.2 Effects of Mean Airfoil Loading

on the Unsteady Response Functions

Figures 83 through 112 present results which show the effects of mean loading

on the unsteady response functions. All of the plots in these figures compare re-

sponse functions for a 12% thick airfoil with no steady loading versus a 12_ thick

airfoil with steady loading due to either angle of attack or camber or both. Com-

parisons are made at Mach numbers of .1, .5, and .6. At a Mach number of .1, the

loaded airfoils for which the comparison is made have the following configurations:

a = 3 °, camber = 0; a = 5 °, camber = 0; a = 0 °, camber = .05; a = 2 °, camber =

.05; and finally a = 0 °, camber = .10. At a Mach number of .5, the loaded airfoil

configurations are: a = 5 °, camber = 0; a = 0 °, camber = .05; a = 2 °, camber =
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.05; and a = 0 °, camber = .10. At a .6 Math number, the only comparison made is

for an airfoil with a = 3 ° and camber = 0. The choice of the airfoil configurations

was limited by the necessity that the mean flow be free of shocks. The configura-

tions that were chosen enable us to look at loading effects due to angle of attack

alone, camber alone, and angle of attack and camber together.

It is evident from the results that the effects that steady airfoil loading has on

the unsteady response functions varies considerably, depending upon whether the

gust is one-, two-, or three-dimensional. It is also evident that the effect on the

unsteady moment differs in significant ways from the effect on the unsteady lift.

The results for the one-dimensional gust case (Figures 83 - 92) show that there

is not much effect on the response functions due to the airfoil loading unless the

airfoil is substantially loaded. For the results presented, only the 10% cambered

airfoil shows a strong effect on the unsteady lift and moment. At both the .1 and

.5 Mach numbers, the effect on the unsteady lift for the 10% cambered airfoil is to

produce a spike in the response function curve which occurs at about kl = 3.0. The

results for the unsteady moment also show a spike in the response function curve

for the .5 Mach number case. The spike here occurs at kl = 2.0, and is followed by a

portion of the curve that is concave up rather than concave down. It is interesting to

note that these features for both the unsteady lift and moment can be seen in their

formative stages in the plots for the .5 Mach number airfoil with 5% camber and

2 ° angle of attack (See Figure 90). We conclude that for the one-dimensional gust

case, small amounts of mean airfoil loading have a negligible effect on the unsteady

response functions, but as the loading increases, there eventually develops a spike

that appears in the response function curve at the higher frequencies. The spike

point is then followed by a portion of the curve which is markedly different from

the corresponding curve for the unloaded airfoil case.

In contrast to the results for the one-dimensional gust case, the two-dimensional

gust results (Figures 93 - 102) show a strong effect due to airfoil mean loading, even
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for only lightly loaded airfoils. The effect on the unsteady lift is seen to be much

stronger than on the unsteady moment.

For airfoils with small loading, the effect on the unsteady lift at the low reduced

frequencies is primarily to shift the response function in the direction of the negative

real axis without changing the basic shape of the curve. The amount that the curve

is shifted is given by the change in the quasi-steady lift (kl --4 0, k2 -+ 0) from the

unloaded airfoil to the loaded airfoil.

For airfoils that are more heavily loaded, the response function for the unsteady

lift is both shifted to the left and distorted. As the steady loading on the airfoil

increases, the distortion of the curve becomes very strong until a point is reached

such that the response function doubles back and crosses itself and the whole char-

acter of the curve changes. This can be seen in the results in Figure 101.a. Note

that the evolution of the curves leading up to this marked change in the character

of the unsteady lift response function can be seen in Figures 99.a and 100.a.

In Section 4.1, it was mentioned that for airfoils with small angle of attack and

camber, the reduction in the quasi-steady lift due to airfoil loading is proportional

to the steady lift coefficient CL. It is interesting to note that this result also holds

approximately for airfoils that are more substantially loaded. Denoting the change

in the quasi-steady lift by AC_ and the proportionality constant by -K, we have

approximately AC' L = -K CL, where K -- .25. This compares with a value of K --

.26 for lightly loaded airfoils. As a general rule of thumb, then, the two-dimensional

quasi-steady lift for an airfoil with steady loading is reduced over that of an unloaded

airfoil of the same thickness by about 25% of the value of the steady lift coefficient.

This is true irregardless of whether the induced loading is due to airfoil angle of

attack or camber or both. We conclude, then, that for a two-dimensional gust,

mean loading on the airfoil leads to a significant reduction in the magnitude of the

unsteady lift at the lowest reduced frequencies.

Unlike the results for the unsteady lift, the results for the unsteady moment
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show that there is a marked difference in the effects of mean airfoil loading on

the unsteady moment response function depending on whether the induced loading

is due to airfoil angle of attack or camber. The results indicate that when the

steady loading on the airfoil is induced by angle of attack, there is a reduction in

the magnitude of the unsteady moment for the reduced frequencies up to about

.5. The reduction in the quasi-steady moment is significant, being about 19% for

a 12_ thick airfoil at a Mach number of .1 and angle of attack of 5 °, and 17%

for the same airfoil at a .5 Mach number. However, when the steady loading is

induced by airfoil camber, there is not much effect on the unsteady moment unless

the airfoil is substantially loaded. For example, the plots for the airfoils with 5%

camber and no angle of attack show almost no difference between the unsteady

moment for the loaded and unloaded airfoils (See Figures 95.b and 99.b). Only

when the camber ratio is .10 and the Mach number is .5 do the unsteady moment

plots show much effect due to the airfoil loading, and here it is limited to the higher

reduced frequencies beginning around 1.3. Our conclusion is that induced loading

due to angle of attack significantly reduces the magnitude of the unsteady moment

for the quasi-steady case and the lower reduced frequencies up to about .5, but

induced loading due to airfoil camber has little effect on the unsteady moment for

the two-dimensional gust case.

In looking at the three-dimensional gust results (Figures 103 - 112), it is evident

that there are both similarities and differences in the effects of mean loading on the

unsteady lift and moment of airfoils subjected to 2-D and 3-D gusts.

First, the effects are similar in that the unsteady lift for the three-dimensional

gust case is also sensitive to small changes in mean airfoil loading. This is partic-

ularly true for the quasi-steady lift and the lift at the lower reduced frequencies.

It turns out that the reduction in the quasi-steady lift from the unloaded airfoil

to the loaded airfoil, AC_, is again approximately proportional to the steady lift

coefficient CL. The proportionality constant for the 3-D results shown in Figures
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103 - 112 is about .10, as opposed to .25 for the previously described 2-D results.

It should be pointed out that for all of the three-dimensional results shown in these

figures, the value of the spanwise wave number, k3, was fixed at .4. We can therefore

make no conclusion as to how general this value of the proportionality constant is

for three-dimensional gust results, or as to how the proportionality constant for the

3-D case might be effected by a change in ks.

The second main similarity between the 2-D and 3-D results is that in both

cases the unsteady moment responds differently to airfoil steady loading depending

on whether the loading is due to angle of attack or camber. For the 2-D case, the

unsteady moment decreased significantly for the low reduced frequencies when the

mean loading was due to angle of attack, but showed almost no change when the

loading was due to airfoil camber. For the 3-D case, the low frequency unsteady

moment again decreases in response to airfoil steady loading which is induced by

angle of attack. However, when the mean loading is induced by airfoil camber, the

unsteady moment for the low reduced frequencies actually increases rather than

decreasing or showing no change at all. For example, at a Mach number of .1, the

airfoil with 5 ° angle of attack and no camber shows a decrease in the quasi-steady

moment of 12% over the same airfoil with no angle of attack. On the other hand, an

airfoil with the same thickness ratio and Mach number that has no angle of attack

but has a camber ratio of .05 shows a 7% increase in the quasi-steady moment. (See

Figures 104.b and 105.b.) At a Mach number of .5, the same comparison between

the two airfoils shows an 11% decrease in the quasi-steady moment for the airfoil

with angle of attack but no camber, but an 8% increase for the airfoil with no angle

of attack but 5% camber. (See Figures 108.b and 109.b.)

So the two main similarities between the 2-D and 3-D results are that in each

case the unsteady lift is sensitive to small changes in mean loading, and in each

case the unsteady moment responds differently to airfoil loading induced by angle

of attack and airfoil loading induced by camber.
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The biggest difference between the 2-D and 3-D results is that for the 3-D

case, mean loading does not have much effect on the results for the higher reduced

frequencies. This is in contrast to the 2-D case, where the entire range of reduced

frequencies showed a strong sensitivity to changes in mean airfoil loading.

4.2.3 Effects of Airfoil Mach Number

on the Unsteady Response Functions

We conclude our discussion of the numerical results by looking at the effects of

Mach number on the unsteady response functions. Figures 113 through 136 show

comparisons of the unsteady response functions for various airfoils at different Mach

numbers. All of the results are for 12% thick airfoils. The 1-D gust results are shown

in Figures 113 - 120, the 2-D gust results in Figures 121 - 128, and the 3-D gust

results in Figures 129 - 136.

An analysis of the results would seem to indicate that there are two main effects

on the unsteady response functions due to an increase in airfoil Mach number.

First, the magnitude of the unsteady lift and moment are significantly increased

for the low reduced frequencies ranging from 0 up to about .2 or .3, and then signif-

icantly decreased for reduced frequencies above about 2.0. For reduced frequencies

ranging from about .3 up to 2.0, the effect of the higher Mach number on the un-

steady response functions is mainly a change in phase. These trends essentially

hold for one-, two-, and three-dimensional gusts, particularly for airfoils without

mean loading. For airfoils that have mean loading, the trends do not hold quite

so strongly for the three-dimensional gust case, where there is little effect on the

magnitude of the unsteady response for the low frequency cases. The strength of

the Mach number effects on the two-dimensional gust results is also somewhat re-

duced for the loaded airfoil case. For example, for an unloaded 12% thick airfoil,

the two-dimensional quasi-steady lift increases by 12.6% when the Mach number is

increased from .1 to .5. However, for a 12% thick airfoil with 2 ° angle of attack and
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camber ratio of .05, the two-dimensional quasi-steady lift increases by only 7.1%

when the Mach number is increased from .1 to .5 (See Figures 121.a and 126.a).

The one-dimensional gust results show essentially the same trends with increasing

Mach number, irrespective of whether the airfoil has mean loading or not.

The second major effect that an increase in airfoil Mach number has on the un-

steady response functions is that it intensifies the distortion of the response function

curves that occurs clue to mean loading. This can be seen very clearly in Figures

125, 126, and 127, where the response functions for the higher Mach number cases

are much more distorted than those for the lower Mach number cases. Because the

gradients in the mean flow are stronger at the higher Mach number, the imposed

gust undergoes a stronger distortion with increasing Mach number, and there is a

corresponding greater distortion of the unsteady response functions.
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CHAPTER V

CONCLUSION

We conclude on the basis of the numerical results presented in the previous

chapter that the frequency domain numerical scheme developed in the present work

can be used to solve a wide variety of unsteady vortical flow problems for a large

range of Mach numbers and reduced frequencies. The results presented demon-

strated the effects of airfoil thickness, camber, angle of attack, and Mach number

on the unsteady lift and moment of Joukowski airfoils in subsonic vortical flows. It

was seen that the effects of these parameters on the unsteady response functions

varied considerably, depending on both the magnitude of the reduced frequency

and the dimensionality of the imposed upstream gust. In addition, the results have

shown that the distortion by the nonuniform mean flow of the convected upstream

disturbances can have a very strong effect on the unsteady airfoil response. The

results presented have thus demonstrated the importance of having a numerical

scheme which can handle mean flow distortion effects as well as three-dimensional

gusts for a large range of reduced frequencies.

Another contribution of the present work is that it presents a set of benchmark

solutions for realistic flow configurations on which unsteady computational fluid dy-

nan-tics codes can be validated. In addition, it lays the foundation for the numerical

implementation of the linearized aerodynamic approach for the analysis of unsteady

vortical flows around airfoils used in real applications. Although we have considered

only Joukowski airfoil geometries in the present work, we point out that since any

airfoil geometry can be represented using complex variables and conformal mapping

techniques, the present method can be straightforwardly extended to other airfoils.

The current work has therefore illuminated many of the important issues to be

resolved in the development of such a general numerical implementation.

We conclude, then, that the present approach represents an alternative to the
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potential and primitive variable methods for the efficient and accurate solution of

unsteady aerodynamic flow problems. The key features of the present frequency

domain numerical scheme are the transformation into elliptical coordinates, the

method of grid determination, the far fidd radiation condition, the formulation and

method of evaluation of the source term, and the direct sparse matrix solver.

Finally, it is hoped that the present theoretical study of unsteady vortical flows

around Lifting airfoils wiU help pave the way for the development of robust, highly-

efficient computer codes which can be used in the engineering analysis of unsteady

aerodynamic flow fields.
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gust, (b) transverse and longitudinal gust with -al = a2 = .7071, kl = k2,

a3 = k3 = O, and (c) a three-dimensional gust with k3 = 0.4, Iff] = 1,

-_V kl =k2 ff-k'=O, a2 >0. Moo =.l, camber=O, thickness
al _ 4'

ratio = .12. kl = 0.0, 0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0,

1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0.

86



(a)

(b)

(c)

t--

Z

IE

G3

_,-

¢-v

Z

CO

<E

IE

I--

Z

I.J

IE

CD

_C

rnv

Z

CO

_Z

'5-

I.--

Z

la.J

GD

_E

c_"

_2

Z

GO

IE

0.25 -

0,00

-0,25 -

0°25 -

0o00

-0.25

-0°5
1 I I

0,0 0,5
I I I I

I o0 I.5

REAL MOMENT

Figure 18. Comparison between the unsteady moment of a 12 percent thick, Joukowski

airfoil at 0 ° angle of attack and 1 ° angle of attack for a (a) transver_

gust, (b) transverse and longitudinal gust with -al = a2 = .7071, ka = ke.

a3 = k3 = O, and (c) a three-dimensional gust with k3 = 0.4, Iffl = 1,

- _! ka = k2, if" k = O, a2 > O. M_ = .1, camber = O, thickness
-- 4'

ratio = .12. ka = 0.0, 0.01, 0.03, 0.06, 0.1 0.2, 0.3, 0.45, 0.6, 0.8, 1.0,

1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0.

87



(4)

LI_

J

Z

(-9

¢E

0.25

0o00

-0,25

J__ o Camber = .02

C_ber 0

(b)

(c)

I,

U

Z

£D

t--

tl

J

Q_

Z

(-.9

_E

0.25

0,25

-0 5
1 1

0 0
I I 1 I

0.5 1 ,,0

REAL LIFT

1.5

Figure 19. Comparison between the unsteady lift of an uncambered Joukowski

airfoil and an airfoil with camber ratio of .02 for a (a) transverse

gust, (b) transverse and longitudinal gust with -al = a2 = .7071, kl = k2,

a3 = k3 = O, and (c) a three-dimensional gust with k3 = 0.4, [E] = 1,

a, =__,7 kl =k2, E'k'=O, a2 >0. M_ =.l,a=O °,thickness

ratio = .12. kl = 0.0, 0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0,

1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0.

88



(a)

(b)

(c)

I---

Z

LIJ

_E

0
0.25 -

,>...

c'v

< 0,00
Z

x: -0.25 -

t"'-

'7

LLI

_E

ED
_- 0,25 -

c 0,00
Z

(.D

-0,25 -

-0
_.L____-- _L_

5 0o0 0,5

o Camber = .02

o Camber = 0

l t
I o0 1 .5

REAL MOMENT

Figure 20. Comparison between the unsteady moment of an uncambered Joukow._k!

airfoil and an airfoil with camber ratio of .02 for a (a) transverse

gust, (b) transverse and longitudinal gust with -al = ae = .7071, ki --=I,,,

a3 = k3 = 0, and (c) a three-dimensional gust with k3 = 0.4, [_[ = 1,

_ _3 kl = k2 ff " k = O, a2 >0. Moo = .l, a = O°,thickness
al -- 4'
ratio = .12. kl = 0.0, 0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0,

1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0.

89



b--

It

d

>-

CZ

<E

_Z

r.D

<E

0o26

0°00

-0°25

Fixed Grid Results

Analytical Results

(b)

LI_

_..I

t'y

Z

(_O

IE

0°25

[JU.

_J

Q::

"T

(C) --Z

(:3

0°25

0,,00

-0°25

-0o50

-0 5 0
1 1 I I 1 1

0 0,,5 1 o0 1 o5

REAL LIF:

Figure 21. Comparison between numerical results generated on a fixed grid

and analytical results for a flat plate airfoil in a transverse gust at

(a) M=0.1, (b) M=0.5, and(c) M=0.8; kl =0.0,0.007,

0.027, 0.062, O.110, 0.172, 0.248, 0.338, 0.442, 0.561, 0.694, 0.842,

1.01, 1.18, 1.38, 1.59, 1.82, 2.07, 2.33, 2.62, 2.93, 3.26, 3.62, 4.01.

@0



tt.

--4

qlt

0.80

0.6_

0.48

0,32

O.L6

- .00

-.16

-.32

-.'1.8

-.bq

-.eo o
L _3o

3O O.OZ 0 0

#EAL L IFT

Figure 22. Numerical results for the unsteady lift of a 12 percent thick,

symmetric Joukowski airfoil in a transverse gust. Results show grid

dependent errors due to exponentially decreasing spacing in the

direction which was used in place of condition (3.70). kl = 0.1, 0. :_,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8,

1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0.

91



le| -

Od

i11
c]3
_E

Z

l-

(J

1o0

0.9

0,8

0o?

0.6

0,6

0off L

0.3

0,2

0ol

o°oo I I I I I I ] l ] I
0 0ol 0.2 0o3 0oS L 0°6 0.6 0o7 0°8 0°9 lo0

FRACTION OF CHORD

Figure 23. Mean flow Mach number at the airfoil surface for a 3 percent

thick Joukowski airfoil with Moo = .1, a = 0 °, and camber

ratio = O.

92



] 01 --

ta3
or3

Z

I

co

Io0

0°9

0°8

0.7

0.6

0°5

0o_

0.3

0°2

0oi

o°%

_-__e___o _ o _ _ _ ^ ^

l I l l I I I I J..... J
0 Oo ! 0°2 0°3 0°4- 0o5 0°6 0°7 0°8 0°9 1 o()

FRACTION OF CHORD

Figure 24. Mean flow Mach number at the airfoil surface for a 12 percent

thick Joukowski airfoil with Moo = .1, a = 0 °, and camber

ratio = O.



1.1

1o0

0°8

0ol

OoOo I I I I I I I I 1 J
0ol 0°2 0.3 OoqOo5 0.6 0.7 0.8 0°9]°0

FRACTION OF CHORO
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Figure 29. Mean flow Mach number at the airfoil surface for a 12 percent

thick Joukowski airfoil with Moo = .1, a = 0 °, and camber

ratio = .05.
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Figure 30. Mean flow Max:h number at the airfoil surface for a 12 percent

thick Joukowski airfoil with Moo = .1, a = 2 °, and easnber

ratio = .05.
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Figure 31. Mean flow Mach number at the airfoil surface for a 12 percent

thick Joukowski airfoil with Moo = .1, a = 0 °, and camber

ratio = .10.
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Figure 32. Mean flow Mach number at the airfoil surface for a 6 percent

thick Joukowski airfoil with Moo = .1, a = 2 °, and camber

ratio = .05.
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Figure 33. Mean flow Math number at the airfoil surface for a 12 percent

thick Joukowski airfoil with Moo = .5, _ = 0 °, and camber

ratio = 0. Calculation by FLO36.
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Figure 34. Mean flow Mach number at the airfoil surface for a 12 percent

thick Joukowski airfoil with Moo = .5, c_ = 5 °, and camber

ratio = 0. Calculation by FLO36.
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Figure 35. Mean flow Math number at the airfoil surface for a 12 percent

thick Joukowski airfoil with Moo = .5, o_ = 0 °, and camber

ratio = .05. Calculation by FLO36.
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Figure 36. Mean flow Mach number at the airfoil surface for a 12 percent

thick Joukowski airfoil with Moo = .5, a = 2 °, and camber

ratio = .05. Calculation by FLO36.
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Fig,,re 37. Mean flow Mach number at the airfoil surface for a 6 percent

thick Joukowski airfoil with Moo = .5, a = 2 °, and camber

ratio = .05. Calculation by FLO36.
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Figure 38. Mean flow Mach number at the airfoil surface for a 12 percent

thick Joukowski airfoil with Moo = .5, a = 0 °, and camber

ratio = .10. Calculation by FLO36.
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Figure 39. Mean flow Mach number at the airfoil surface for a 3 percent

thick Joukowski airfoil with Moo = .6, a = 0 °, and camber

ratio = 0. Calculation by FLO36.
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Figure 40. Mean flow Mach number at the airfoil surface for a 12 percent

thick Joukowski airfoil with Moo = .6, a = 0 °, and camber

ratio = 0. Calculation by FLO36.
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Figure 41. Mean flow Mach number at the airfoil surface for a 12 percent

thick Joukowski airfoil with Moo = .6, a = 3 °, and camber

ratio = 0. Calculation by FLO36.
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Figure 42. Mean flow Mach number at the airfoil surface for a 12 percent

thick Joukowski airfoil with M_ = .7, a = 0 °, and camber

ratio = 0. Calculation by FLO36.
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Figure 43. Mean flow Mach number at the airfoil surface for a 6 percent

thick Joukowski airfoil with Moo = .8, a = 0 °, and camber

ratio = 0. Calculation by FLO36.
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J

Figure 44. Joukowski airfoil geometries considered in the present work.

(a) thickness ratio = .03, camber = O; (b) thickness ratio = .06,

camber = O; (c) thickness ratio = .06, camber = .05;

(d) thickness ratio = .12, camber = O.
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Figure 45. Joukowski airfoil geometries considered in the present work.

(a) thickness ratio = .12, camber = .02; (b) thickness ratio = .12,

camber = .05; (c) thickness ratio = .12, camber = .10.
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Figure 47. Computational grid in the physical plane for a 12 percent

thick Joukowski airfoil with Moo = .1, a = 5 °, camber = O,

and kl = .1.
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Figure 48. Computational grid in the transformed plane for a 12 percent

thick Joukowski airfoil with Moo = .1, a = 5 °, camber = 0,

and kl = 1.0.
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Figure 49. Computational grid in the physical plane for a 12 percent
thick Joukowski airfoil with M_ = .1, a = 5 °, camber = 0,

and kx = 1.0.
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Figure 50. Computational grid in the transformed plane for a 12 percent

thick Joukowski airfoil with Mo_ = .1, a = 5 °, camber = 0,

and kl = 3.0.
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Figure 51. Computational grid in the physical plane for a 12 percent

thick Joukowski airfoil with Moo = .1, a = 5 °, camber "- 0,

and kl = 3.0.
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Figure 52. Computational grid in the transformed plane for a 12 percent

thick Joukowski airfoil with M_ = .1, a = 2 °, camber = .05,

and k_ = .1.
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Figure 53. Computational grid in the transformed plane for a 12 percent

thick Joukowski airfoil with M_ = .1, ot = 2 °, camber = .05,

and kl = .1.
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Figure 54. Computational grid in the transformed plane for a 12 percent
thick Joukowski airfoil with Moo = .5, a = 2 °, camber = .05,

and kl = 1.0.
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Figure 55. Computational grid in the physical plane for a 12 percent

thick Joukowski airfoil with M_ = .5, a = 2 °, camber = .05,

and kl = 1.0.
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Figure 56. Computational grid in the transformed plane for a 12 percent

thick Joukowski airfoil with M_ = .5, a = 2 °, camber = .05,

and kl = 3.0.
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Figure 57. Computational grid in the physical plane for a 12 percent

thick Joukowski airfoil with Mo_ = .5, a = 2 °, camber = .05,

and kl = 3.0.
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Figure 58. Computational grid in the transformed plane for a 12 percent

thick Joukowski airfoil with Moo = .6, a = 3 °, camber = 0,

and kl = 1.0.
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Figurc 59. Computational grid in the physical plane for a 12 percent

thick Joukowski airfoil with Moo = .6, a = 3 °, camber -- 0,

and kl = 1.0.
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Figure 60. Computational grid in the transformed plane for a 12 percent

thick 3oukowski airfoil with Moo = .6, a = 3 °, camber = 0,

and kx = 3.0.
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Figure 61. Computational grid in the physical plane for a 12 percent

thick Joukowski airfoil with M_¢ = .6, a = 3 °, camber = 0,

and kl = 3.0.
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Figure 62. Effect of airfoil thickness on (a) the unsteady rift and (b) the

unsteady moment of a Joukowski airfoil in a transverse gust.

Moo = .1, er = 0 °, camber = O. kl = 0.0, 0.01, 0.03, 0.06,

0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0.
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Figure 63. Effect of airfoil thickness on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse gust.

Mo¢ = .5, a = 0 °, camber --- 0. kl = 0.0, 0.01, 0.03, 0.06,

0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0.
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Figure 64.
Effect of airfoil thickness on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse gust.

Moo -- .6, a = 0 °, camber = 0. kl -" 0.0, 0.01, 0.03, 0.06,

0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0.
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Figure 65. Effect of airfoil thickness on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse gust.

Moo=.7, _ = 0 ° , camber=0, kx =0.0,0.01,0.03,0.06,

0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0.
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Figure 66. Effect of airfoil thickness on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse gust.

Moo = .8, a = 0 °, camber = 0. kl = 0.0, 0.01, 0.03, 0.06,

0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0.

135



(a)

F--

LL

>-

c'v

<Z

Z

C9

<12

0°50

0°25

0°00

-0°25 -

-0o5

0

o

I
0 0

Thickness Ratio = .1'2

Thickness Ratio = .06

I I I I I I
0°5 1 o0 1 o5

REAL LIFT

(b)

I---

Z

LLI

:g_

:E

>-

<E

7

r_9

IE

0.50

0,,25

0o00

-0°25

-0
I I I I I I I

5 0o0 0°5 I .0 105

REAL MOMENT

Figure 67. Effect of airfoil thickness on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse gust.

Moo = .1, a = 2 °, camber = .05. kl = 0.0, 0.01, 0.03, 0.06,

0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0.
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Figure 68. Effect of airfoil thickness on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse gust.

Moo = .5, a = 2 °, camber = .05. kl = 0.0, 0.01, 0.03, 0.06,

0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0.
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Figure 69. Effectof airfoilthicknesson (a) the unsteady liftand (b) the

unsteady moment of a Joukowski airfoilin a transverse and

longitudinalgust. Moo --.i, a = 0°, camber = 0. k I = 0.0,

0.01, 0.03,0.06,0.1,0.2,0.3,0.45,0.6,0.8,1.0,1.3,1.6,2.0,

2.5,3.0,3.5,4.0. -at=as =.7071, k1=k2, a3=ka =0.
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Figure 70. Effect of airfoil thickness on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse and

longitudinal gust. Moo = .5, a = 0 °, camber = 0. kl = 0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0,

2.5, 3.0, 3.5, 4.0. -al =a2 =.7071, kl =k2, a3=k3 =0.
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Figure 71. Effect of airfoil thickness on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse and

longitudinal gust. Moo = .6, a = 0 °, camber = 0. kl = 0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0,

2.5, 3.0, 3.5, 4.0. -al = a2 = .7071, kl = k2, a3 = k3 = 0.
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Figure 72.
Effect of airfoil thickness on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse and

longitudinal gust. M_o = .7, a = 0 °, camber = 0. kl = 0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0,

2.5, 3.0, 3.5, 4.0. -al =a2 =.7071, kl =k2, as=ks =0.
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Figure 73. Effect of airfoil thickness on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse and

longitudinal gust. Moo = .8, a = 0 °, camber = 0. kl = 0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0,

2.5, 3.0, 3.5, 4.0. -al=a2 =.7071, kl=k2, a3=k3 =0.
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Figure 74. Effect of airfoil thickness on (a) the unsteady lift and (b) the

unsteady moment of a doukowski airfoil in a transverse and

longitudinal gust. Mo_ = .1, a = 2 °, camber -- .05. kl = 0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0,

2.5, 3.0, 3.5, 4.0. -al =a2 =.7071, kl =k2, as =ks = 0.
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Figure 75. Effect of airfoil thickness on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse and

longitudinal gust. Moo = .5, c, = 2 °, camber = .05. kl = 0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0,

2.5, 3.0, 3.5, 4.0. -al = as = .7071, kl = ks, a3 = k3 = 0.

144



(a)

0.50

t-"-

LL

0.25

>-

C_

<IZ

Z

CD

0.00

-0°25

_50
l

5
I

0 0 0.5

REAL

o Thickness Ratio = .12

o Thickness Ratio = 0

I 1 I I
1o0

LIFI

1.5

(b)

b--

Z

Iii

_E

0

06

<:

Z

CO

<E

0.50

0.25

0o00

-0.25

I
-50.5 o

I I I I I I
0 0,,5 1 .0

REAL MOMENT

1.5

Figure 76. Effect of airfoil thickness on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a three-dimensional

gust. Moo =.1, a=0 °, camber=0, kl =0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0,

2.5, 3.0, 3.5, 4.0. k3 -- 0.4, IEI= 1, _,,,- -7-,, k, = k2,

_._- = 0, a2 >0.
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Figure 77. Effect of airfoil thickness on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a three-dimensional

gust. Moo=.5, a=0 °, camber=0, kl =0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0,

2.5, 3.0, 3.5, 4.0. k3 -" 0.4, = 1, _ = _z kl = k2,al 4'

_.k= 0, a2 >0.
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Figure 78.
Effect of airfoil thickness on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a three-dimensional

gust. Moo=.6, a=0 °, camber=0, kl =0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0,
_ 7 kl = k2,

2.5, 3.0, 3.5, 4.0. k3 =0.4, I_l=1, a, --_'

d.f_ = 0, a2 > 0.
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Figure 79. Effect of airfoil thickness on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a three-dimensional

gust. Moo=.7, a=0 °, camber=0, kl =0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0,

2.5, 3.0, 3.5, 4.0. k3 =0.4, ]EI=l, ax=_7 kl =k2,
at 4 _

_-k= 0, a2 >0.
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Figure 80. Effect of airfoil thickness on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a three-dimensional

gust. Moo=.8, a=0 °, camber =0. kl =0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0,

2.5, 3.0, 3.5, 4.0. k3 = 0.4, I,+1= 1, m.t = _Z4, kl = k2,

_._= 0, a2 >0.
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Figure 81. Effect of airfoil thickness on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a three-dimensional

gust. Moo = .1, a = 2 °, camber = .05. kl = 0.0, 0.01, 0.03, 0.06,

0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0.

k3 =0.4, I_'1=1, _a, =-_,7 kl =k2,_'_c=0, a2 >0.
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Figure 82. Effect of airfoil thickness on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a three-dimensional

gust. Moo = .5, _ = 2 °, camber = .05. kl -- 0.0, 0.01, 0.03, 0.06,

0.1, 0.2, 0.3, 0.45, 0.6, 0.S, 1.0, 1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0.

k3= o.4, = 1, _ = -¼, k, = k2, E. f¢ = O, a2 > O.
al
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Figure 83. Effect of mean airfoil loading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse gust.

Moo = .1, thickness ratio = .12, camber = 0. kl = 0.0, 0.01, 0.03,

0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0.
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Figure 84. Effect of mean airfoil loading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse gust.

M_ = .1, thickness ratio = .12, camber = 0. kl = 0.0, 0.01, 0.03,

0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0.
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Figure 85. Effectof mean airfoilloading on (a) the unsteady liftand (b) the

unsteady moment of a Joukowski airfoilin a transverse gust.

Moo - .1,thickness ratio = .12, a -" 0°. kl = 0.0,0.01,0.03, 0.06,

0.1,0.2,0.3,0.45, 0.6,0.8,1.0,1.3,1.6,2.0,2.5,3.0,3.5,4.0.
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Figure 86.
Effect of mean airfoil bading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse gust.

Mo_ = .1, thickness ratio = .12. kl = 0.0, 0.01, 0.03, 0.06,

0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0.
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Figure 87. Effect of mean airfoil loading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse gust.

Moo = .1, thickness ratio = .12, a = 0 °. kl = 0.0, 0.01, 0.03, 0.06,

0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0.
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Figure 88. Effect of mean airfoil loading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse gust.

Moo = .5, thickness ratio = .12, camber = 0. kl = 0.0, 0.01, 0.03,

0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0.
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Figure 89. Effect of mean airfoil loading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse gust.

Moo = .5, thickness ratio = .12, cr = 0". kl = 0.0, 0.01, 0.03, 0.06,

0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0.
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Figure 90.
Effect of mean airfoil loading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse gust.

Moo - .5, thickness ratio = .12. kx -- 0.0, 0.01, 0.03, 0.06,

0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0.
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Figure 91. Effect of mean airfoil loading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse gust.

Moo = .5, thickness ratio = .12, a = 0 °. kl = 0.0, 0.01, 0.03, 0.06,

0.1, 0.2, 0.3, 0,45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0.
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Figure 92.
Effect of mean airfoil loading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse gust.

Moo = .6, thickness ratio = .12, camber = 0. kl = 0.0, 0.01, 0.03,

0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, :3.0, 3.5, 4.0.
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Figure 93. Effect of mean airfoil loading on (a) the unsteady lift and (b) the
unsteady moment of a Joukowski airfoil in a transverse and

longitudinal gust. Moo = .1, thickness ratio = .12, camber = 0.

kl = 0.0, 0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6,

2.0, 2.5, 3.0, 3.5, 4.0. -al = a2 = .7071, kl = k2, a3 = ka = 0.

162



(a)

0.50

I--'-
14_

j 0,25

>....

n,_

z

Q.'.'.O

-0

0 _---5 °

o 0_=0 °

I I I

0o0 0°5
I I

1o0

REAL LIFT

(b)

z

LI.J

>-

Z
H

Q3

0.50

0°25

0.00

-0.25 -

I I I I I I
-0o5 0o0 0°5 1.0

REAL MOMENT

Figure 94. Effect of mean airfoil loading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse and

longitudinal gust. Moo = .1, thickness ratio = .12, camber = 0.

k_ = 0.0, 0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6,

2.0, 2.5, 3.0, 3.5, 4.0. -al =a2 =.7071, kl =k2, a3=k3 =0.
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Figure 95. Effect of mean airfoil loading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse and

longitudinal gust. M¢¢ = .1, thickness ratio = .12, a = 0 °.

kl = 0.0, 0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6,

2.0, 2.5, 3.0, 3.5, 4.0. -al =a2 =.7071, kl =k2, a3=k3 =0.
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Figure 96. Effect of mean airfoil loading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse and

longitudinal gust. Moo = .1, thickness ratio = .12.

kl = 0.0, 0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6,

2.0, 2.5, 3.0, 3.5, 4.0. -al =a2 =.7071, kl =ks, a3=ks =0.
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Figure 97. Effect of mean airfoil loading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse and

longitudinal gust. M¢¢ = .1, thickness ratio = .12, tr = 0 °.

kl = 0.0, 0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6,

2.0, 2.5, 3.0, 3.5, 4.0. -al = a2 = .7071, kl = k2, a3 = k3 = 0.
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Figure 98. Effect of mean airfoil loading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse and

longitudinal gust. M_ = .5, thickness ratio = .12, camber = 0.

kl = 0.0, 0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6,

2.0, 2.5, 3.0, 3.5, 4.0. -al =a2 =.7071, kl =k2, a3 =k3 =0.
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Figure 99. Effect of mean airfoil loading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse and

longitudinal gust. Moo = .5, thickness ratio = .12, a = 0 °.

kl = 0.0, 0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6,

2.0, 2.5, 3.0, 3.5, 4.0. -al = a2 = .7071, kl = k2, a3 = k3 -- 0.
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Figure 100.
Effect of mean airfoil loading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse and

longitudinal gust. Moo = .5, thickness ratio = .12.

k_ = 0.0, 0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6,

2.0, 2.5, 3.0, 3.5, 4.0. -al =a2 =.7071, kl =k2, a3=k3 =0.
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Figure 101. Effect of mean airfoil loading on (a) the unsteady lift and (b) the
unsteady moment of a Joukowski airfoil in a transverse and

longitudinal gust. M¢¢ = .5, thickness ratio = .12, a = 0 °.

kl = 0.0, 0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6,

2.0, 2.5, 3.0, 3.5,4.0. -al =a2 =.7071, kl =k2, a3=k3---O.
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Figure 102.
Effect of mean airfoil loading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse and

longitudinal gust. Moo = .6, thickness ratio = .12, camber = 0.

kl = 0.0, 0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6,

2.0, 2.5, 3.0, 3.5, 4.0. -al = a2 = .7071, kl -- k2, a3 = k3 = 0.
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Figure 103. Effect of mean airfoil loading on (a) the unsteady lift and (b) the
unsteady moment of a Joukowski airfoil in a three-dimensional

gust. M_ = .1, thickness ratio = .12, camber = 0. kl = 0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6,2.0, 2.5,

=-7 k, k_,_ k O,3.0, 3.5, 4.0. k3 = 0.4, I, 1= 1, i, = • =
a2 > O. at
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Figure 104. Effect of mean airfoil loading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a three-dimensional

gust. Moo = .1, thickness ratio = .12, camber = 0. kl = 0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6,2.0, 2.5,

3.0, 3.5, 4.0. ka = 0.4, lal -- 1, a-1 _-- 74, kl = k2, _" k : O,
¢! 1

a2>O.
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Figure 105. Effectof mean airfoil loading on (a) the unsteady liftand (b) the

unsteady moment of a Joukowski airfoilin a three-dimensional

gust. Moo = .1,thickness ratio= .12, a = 0% kl = 0.0,

0.01, 0.03,0.06,0.1,0.2,0.3,0.45,0.6,0.8,1.0,1.3,1.6,2.0,2.5,

3.0, 3.5, 4.0. k3 = 0.4, ]_'] = 1, _ 'o, =-_, k,=k2,_./c=O,

a2 >0.
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Figure 106. Effect of mean airfoil loading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a three-dimensional

gust. Moo = .1, thickness ratio = .12. kl - 0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6,2.0, 2.5,

3.0, 3.5, 4.0. k3 = 0.4, I'll = I, _,.,- -¼, k, = k_, _-k -- o,
a2>O.
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Figure 107. Effect of mean airfoil loading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a three-dimensional

gust. Moo = .1, thickness ratio = .12, a = 0 °. kl "- 0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6,2.0, 2.5,

3.0, 3.5, 4.0. k3 =0.4, Id[=l, _a, =-_,T kl =k2,_-k=0,
a2 >0.
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Figure 108. Effect of mean airfoil loading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a three-dimensional

gust. Moo = .5, thickness ratio = .12, camber = 0. kl = 0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6,2.0, 2.5,

3.0,3.5,4.0. k3 0.4, Igl= 1,"2= -7- ki= k2,ft.k = o,= at 4'

a2>O.
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Figure 109. Effect of mean airfoil loading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a three-dimensionai

gust. Moo = .5, thickness ratio = .12, tr = 0 °. kl = 0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6,2.0, 2.5,

3.0, 3.5, 4.0. k3 = 0.4, = 1, m = -¼, kl = k2, ft. k = 0,

a2>0.
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Figure 110. Effect of mean airfoil loading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a three-dimensional

gust. Moo = .5, thickness ratio = .12. kl = 0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6,2.0, 2.5,

3.0, 3.5, 4.0. k3 = 0.4, I:l = 1, m = -z kl -" k2, a" k -- 0,al 4_

a2>0.
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Figure 111. Effect of mean airfoil loading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a three-dimensionai

gust. Moo = .5, thickness ratio = .12, a = 0% kl = 0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5,

3.0, 3.5, 4.0. k3 = 0.4, I_l = 1, m 7 =,1 =-_' k_ = k2, _'/¢ 0,

a2>O.
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Figure 112. Effect of mean airfoil loading on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a three-dimensional

gust. Moo = .6, thickness ratio = .12, camber = 0. kl = 0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5,

3.0, 3.5, 4.0. ka = 0.4, I_[= 1, _ - _z k, = k2 a" k = O,
al -- 4'

a_>O.
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Figure 113. Effect of Mach number on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse gust.

a = 0 °, thickness ratio = .12, camber = 0. kl = 0.0, 0.01,

0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5,

3.0, 3.5, 4.0.
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Figure 114. Effect of Mach number on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse gust.

= 0 °, thickness ratio = .12, camber = 0. kl = 0.0, 0.01,

0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5,

3.0, 3.5, 4.0.
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Figure 115. Effectof Math number on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoilin a transverse gust.

a = 0°, thicknessratio = .12, camber = 0. kl = 0.0,0.01,

0.03, 0.06,0.1,0.2,0.3,0.45,0.6,0.8,1.0,1.3,1.6,2.0,2.5,

3.0, 3.5, 4.0.
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Figure 116. Effect of Mach number on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse gust.

a = 5 °, thickness ratio = .12, camber -- 0. kl = 0.0, 0.01,

0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5,

3.0, 3.5, 4.0.
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Figure 117. Effect of Mach number on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse gust.

a = 0 °, thickness ratio = .12, camber = .05. kl = 0.0, 0.01,

0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5,

3.0, 3.5, 4.0.
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Figure 118. Effect of Mach number on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse gust.

= 2 °, thickness ratio = .12, camber = .05. kl = 0.0, 0.01,

0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5,

3.0, 3.5, 4.0.
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Figure 119. Effect of Mach number on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse gust.

a = 0 °, thickness ratio = .12, camber = .10. kl = 0.0, 0.01,

0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5,

.3.0, 3.5, 4.0.

188



(a)

b--

It_

._J

>--

<Z

Z

(-9

0°25

0o00

-0°25

-0,,50

-0 5

0

o

I I I I I I

I 0o0 1 °0

LIFI

0°5

REAL

I
Io5

(b)

Z

:_-

OC

<I:

Z

¢D

0,,50

0°25

0o00

-0°25

-0 5 0
I I I I I I

0 0.5 I o0 I o5

REAL MOMENT

Figure 120.
Effect of Mach number on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse gust.

= 3 °, thickness ratio = .12, camber = 0. kx = 0.0, 0.01,

0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5,

3.0, 3.5, 4.0.
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Figure 121. Effect of Mach number on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse and

longitudinal gust. thickness ratio = .12, a = 0 °, camber = O.

k_ = 0.0, 0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0,

1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0. -al = a2 = .7071, kl = kz,

a3 = k3 = 0.
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Figure 122. Effect of Mach number on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse and

longitudinal gust. thickness ratio = .12, a = 0 °, camber = 0.

k, = 0.0,0.0!,0.03, 0.06,0.I,0.2,0.3,0.45, 0.6,0.8, 1.0,

1.3,1.6,2.0,2.5,3.0,3.5,4.0. -a, = a2 = .7071, kl = ks,

a3 : k3 : 0.
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Figure 123. Effect of Mach number on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse and

longitudinal gust. thickness ratio = .12, a = 0 °, camber = 0.

kl = 0.0, 0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0,

1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0. -al = a2 = .7071, kl = k2,

a3 -" k3 = O.
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Figure 124. Effect of Mach number on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse and

longitudinal gust. thickness ratio = .12, a = 5 °, camber = 0.

kl = 0.0, 0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0,

1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0. -al = as = .7071, kl = ks,

a3 = k3 = O.
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Figure 125. Effect of Mach number on (a) the unsteady lift and (b) the

unsteady moment of a Jou.kowski airfoil in a transverse and

longitudinal gust. thickness ratio = .12, a = 0 °, camber = .05.

kl = 0.0, 0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0,

1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0. -al -- a2 -- .7071, kl = ks,

a3 = k3 = O.
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Figure 126. Effect of Mach number on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse and

longitudinal gust. thickness ratio = .12, a = 2 °, camber = .05.

k, = 0.0, 0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0,

1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0. -al = a_ --- .7071, kl = k2,

a3 = k3 = O.
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Figure 127. Effect of Mach number on (a) the unsteady lift and (b) the
unsteady moment of a Joukowski airfoil in a transverse and

longitudinal gust. thickness ratio = .12, a = 0 °, camber = .10.

kl = 0.0, 0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0,

1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0. -al = a2 = .7071, kl - k2,

a3 = k3 = 0.
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Figure 128. Effect of Mach number on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a transverse and

longitudinal gust. thickness ratio = .12, o_ = 3 °, camber = 0.

kl = 0.0,0.01, 0.03,0.06, 0.1,0.2,0.3,0.45, 0.6,0.8, 1.0,

1.3,1.6,2.0,2.5,3.0,3.5,4.0. -al = a2 = .7071, kl = k2,

(13 = k3 _ O.
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Figure 129. Effect of Mach number on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a three-dimensional

gust. a = 0 °, thickness ratio = .12, camber = 0. kl = 0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6,2.0, 2.5,
3.0,3.5,4.0. k3 =0.4, I_1=1, _= 7 ka =k2, d-k=0,

a2>O.
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Figure 130. Effect of Math number on (a) the unsteady lift and (b) the

unsteady momcnt of a Joukowski airfoil in a three-dimensional

gust. a = 0 °, thickness ratio = .12, camber = 0. kl = 0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6,2.0, 2.5,

3.0, 3.5, 4.0. k3 =0.4, [_[= 1, _ =-Z kl =ks _'k = 0,at 4' '

a2>0.
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Figure 131. Effect of Mach number on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a three-dimensional

gust. c_ = 0 °, thickness ratio = .12, camber = O. kl = 0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6,2.0, 2.6,

3.0, 3.5, 4.0. k3 = 0.4, I,_1= 1, _.,= -i,r k,= k2,a. k = o,
a2>0.
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Figure 132. Effect of Mach number on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a three-dimensional

gust. c_ = 5 °, thickness ratio = .12, camber = 0. kl = 0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5,

3.0, 3.5, 4.0. k3 =0.4, 1_71=1, _., _--Z4, k_ =k2,_.k=0,

a2>O.
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Figure 133. Effect of Mach number on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a three-dimensional

gust. _ = 0 °, thickness ratio = .12, camber = .05. kl = 0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6,2.0, 2.5,
3.0, 3.5, 4.0. k3 = 0.4, I_l = 1, _-_ r,,_ =-_, kx =k2,_'k=O,
a2>O.
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Figure 134. Effect of Mach number on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a three-dimensional

gust. c_ = 2 °, thickness ratio = .12, camber = .05. kl = 0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6,2.0, 2.5,

3.0, 3.5, 4.0. k3 =0.4, I_1=1, _ Z kl=k2, d'k =0,elI _" --4'

a2 >0.
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Figure 135. Effect of Mach number on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a three-dimensional

gust. a = 0 °, thickness ratio = .12, camber = .10. kl = 0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5,

3.0, 3.5, 4.0. k3 =0.4, [_[=1, _--7 k, =k2,_-f¢ =0,
at -- 4'

a2>0.
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Figure 136. Effect of Math number on (a) the unsteady lift and (b) the

unsteady moment of a Joukowski airfoil in a three-dimensional

gust. a = 3 ° , thickness ratio = .12, camber = 0. kl = 0.0,

0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5,

3.0, 3.5, 4.0. ks = 0.4, I, 1= 1 m _ _7_ kl = k2 ft. fc = O,
' al -- 4'

a2>O.
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